I/A Series® Magnetic Flow Transmitter
Model IMT25

Operation, Configuration, and Calibration
Contents

Figures ... 7

Tables .. 9

1. Introduction .. 11
 Description ... 11
 Intended Audience .. 11
 Functions .. 11
 Reference Documents ... 12

2. Quick Start .. 15
 FoxCom or HART Protocol .. 15
 Foundation Fieldbus Protocol .. 16
 Determining the Meter Factor ... 18

3. Operation .. 21
 Operation from Keypad/Display Panel .. 21
 Top Level Menu .. 22
 Measurements Mode .. 24
 Status Mode ... 25
 Identity Mode ... 30
 Quick Start Mode (FoxCom and HART) ... 31
 Test Mode .. 32
 Setup Mode ... 32
 Alarm Actions ... 33
 Conditions That Can Be Alarmed .. 33
 Actions of Transmitter During Alarm Conditions .. 33
 Diagnostic Actions ... 34
 Acknowledging Diagnostics .. 35
 Write Protect Switch .. 35
 Totalizer Operation ... 36
 Resetting Totals .. 37
 Totalizer Overflow .. 37
 Resetting AZL (EDP) Count .. 37
 On-Line Help .. 37
 Output Owner Priority Structure .. 38
4. Configuration

Preparing Your Transmitter for Configuration

Getting Started

Configuration Tools

Configuration Guide — How to Use

Viewing and Changing Data

Setup of System Parameters

Default Screen

Dual Display

Rate Display

Totalizer

Setup of Outputs

Output Mode

Range

Pulse Out

Rate Out Damp

Relay Outputs

HART Output

Setup of Alarms

High Rate and Low Rate

High Fwd Tot 1 and High Fwd Tot 2

AutoZeroLock (Empty Pipe)

Rate Response

Display Response

Alarm Clear

Setup of Diagnostics

Rate Response

Display Response

Setup of Identity

Setup of Passcodes

Setup of Transmitter

Xmtr Mode

Line Frequency

Flow Direction

Contact Inputs

Noise Reduction

AutoZeroLock (Empty Pipe) Detection

Setup of Calibration

Meter Factor

Analog Out Cal
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMT25 Magnetic Flow Transmitter — Keypad/Display</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>IMT25 Magnetic Flow Transmitter — Displays</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Transmitter Modes and Their Basic Functions</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Structure Diagram — Measurements Menu</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Structure Diagram — Status Menu</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Structure Diagram — Identity Menu</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Write Protection Switch</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>Example of Structure Diagram</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>BiDirectional Dual Range Milliampere Output</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>BiDirectional Split Range Milliampere Output</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>Noise Reduction</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Structure Diagram — Top Level Menu</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>Structure Diagram — Setup Menu</td>
<td>62</td>
</tr>
<tr>
<td>14</td>
<td>Structure Diagram — System Menu</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>Structure Diagram — System Menu</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>Structure Diagram — Outputs Menu</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>Structure Diagram — Outputs Menu</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>Structure Diagram — Outputs Menu</td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td>Structure Diagram — Alarms Menu</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>Structure Diagram — Diagnostics Menu</td>
<td>69</td>
</tr>
<tr>
<td>21</td>
<td>Structure Diagram — Identity Menu</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>Structure Diagram — Passcodes Menu</td>
<td>71</td>
</tr>
<tr>
<td>23</td>
<td>Structure Diagram — Transmitter Menu</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Structure Diagram — Transmitter Menu</td>
<td>73</td>
</tr>
<tr>
<td>25</td>
<td>Structure Diagram — Calibration Menu</td>
<td>74</td>
</tr>
</tbody>
</table>
Tables

1 Reference Documents .. 13
2 Meter Factor Multipliers ... 18
3 Nominal Meter Factors for IMT25 Transmitter used with 2800 Flowtube 19
4 Functions of Keys ... 22
5 Analog Output Configuration ... 26
6 Pulse Output States ... 27
7 Contact Input Status .. 27
8 Relay Output Status .. 27
9 Configuration Guide ... 41
10 Alphanumeric Characters ... 44
11 Custom Slope ... 44
12 Custom Slope ... 46
13 URV Selection in UniDirectional Multi-Range Flow Mode ... 48
14 Flow Direction ... 56
15 Contact Input Functions ... 57
1. Introduction

Description

An I/A Series Magnetic Flowmeter System consists of two major components:

- IMT25 Magnetic Flow Transmitter with Version 2 Software
- Magnetic Flowtube
 - 8000A wafer body
 - 2800, 8300, 9100A, 9200A, or 9300A flanged body

A system may be specified with the transmitter integrally mounted with the flowtube or with a remote mounted transmitter, which can be mounted either on a pipe or a flat surface.

Your transmitter has one of three communication protocols.

One is a FoxCom communications protocol. The digital output signal in this version is used for flowmeters serving as a primary measuring device in an I/A Series system. You can communicate with this version via the I/A Series system, the PC-based Configurator, or the optional local keypad/display.

Another has HART communications capability. You can communicate with this version via a HART Communicator, PC-Based Configurator, or the optional local keypad/display.

The third has FOUNDATION fieldbus communication capability. You can communicate with this version via a fieldbus host or the optional local keypad/display.

This document describes local operation, configuration, and calibration of an IMT25 Transmitter supplied with local keypad and display. For information on operation, configuration, and calibration from a PC-Based Configurator, a HART Communicator, or a FOUNDATION fieldbus host refer to the documents listed in “Reference Documents” on page 13.

Intended Audience

This document is intended for use by process operators, engineers, and instrument technicians. If you are interested only in operation, read the general information in the Introduction and the chapter titled Operation. If you are interested in calibration, read the Introduction and chapters titled Operation and Calibration. If you are concerned with configuration, read the entire manual, with special emphasis on the chapter titles Configuration and the structure diagrams in Appendix A and the configuration worksheets in Appendix B.

Functions

Using the IMT25 front panel keypad/display, the functions you can perform are:
Operating Functions

- Display Measurement Information: The current value of the flow rate in engineering units (EGU), flow rate in percent of upper range value (URV), the Forward Total, Reverse Total, Net Total, and Grand Total.

- Display the Status of the Transmitter: The current operating mode, Analog and Pulse Output values, Contact Input settings, Relay Output settings, noise reduction, AutoZeroLock information, and write protection as well as alarm and diagnostic status.

- Display Identity Information: Tag, description, and message plus identification data for the flowmeter, flowtube, and transmitter software.

- Acknowledge Alarms and Diagnostic Conditions.

- Reset Totals.

Calibration Functions

--- NOTE ---
These functions can be passcode protected from keypad changes.

- Adjust the 4 and 20 mA output signal (requires additional equipment)
- Preset outputs to calibrate control loop
- Calibrate the AutoZeroLock Detector

Configuration Functions

--- NOTE ---
These functions can be passcode protected from keypad changes.

- Display and modify all configuration parameters
- Assign passcodes and set levels of privilege

Reference Documents

This document addresses operation, configuration, and calibration using the local keypad/display panel. For remote communication with your transmitter and other details of the flowmeter, refer to the applicable documents listed in Table 1.
Table 1. Reference Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents:</td>
<td></td>
</tr>
<tr>
<td>MI 021-387</td>
<td>IMT25 Transmitter - Installation</td>
</tr>
<tr>
<td>MI 021-391</td>
<td>IMT25 Transmitter - System Maintenance</td>
</tr>
<tr>
<td>MI 021-392</td>
<td>IMTSIM Magnetic Flowtube Simulator</td>
</tr>
<tr>
<td>MI 021-397</td>
<td>IMT25 Transmitter - Operation Using a HART Communicator</td>
</tr>
<tr>
<td>MI 021-399</td>
<td>IMT25 Transmitter - Operation from a Fieldbus Host</td>
</tr>
<tr>
<td>MI 020-495</td>
<td>PC20 Intelligent Device Field Configurator</td>
</tr>
<tr>
<td>MI 020-504</td>
<td>PC50 Intelligent Device Tool - Operation Using FoxCom Protocol</td>
</tr>
<tr>
<td>MI 020-520</td>
<td>PC50 Intelligent Device Tool - Operation Using HART Protocol</td>
</tr>
<tr>
<td>FOUNDATION Fieldbus Document:</td>
<td></td>
</tr>
<tr>
<td>FD-043 Rev.2.0</td>
<td>Technical Overview — FOUNDATION Fieldbus</td>
</tr>
</tbody>
</table>
2. Quick Start

FoxCom or HART Protocol

Your IMT25 Transmitter can be configured with a PC-Based Configurator or with the keypad/display option. With the keypad/display, two configuration menus exist, Quick Start and Setup. Most basic applications can be configured in Quick Start mode.

Quick Start mode can be used for applications requiring only:

- A 4-20 mA output based on a flow rate in (US) GPM
- The transmitter display to show a flow rate in (US) GPM
- A FoxCom digital or HART flow rate signal.

Use Setup mode that is fully described in “Configuration” on page 39, for applications involving:

- Transmitters powered from 50 Hz sources
- Pulse and frequency outputs
- Totalizer functions
- Flow units other than (US) GPM
- Alarm functions
- Multi-range or bi-directional flow configurations.

To make Quick Start changes to the configuration, go to 1 TOP LEVEL/Quick Start by pressing the Left arrow repeatedly until the display reads 1 TOP LEVEL. Then use the up/down arrow keys to go to 1 TOP LEVEL/Quick Start. The procedure to change your configuration is demonstrated by the following example:

1. Use the Right arrow key to move to MFACTOR FORMAT? {###.#######}. This format can be changed, if necessary, to accommodate the meter factor.
 a. If no change is required, press the Right arrow key.
 b. To change the format, press Shift + Change to enter Edit Mode. Then use the up/down arrow keys to step through the choices. When you reach the format you want, press the Right arrow key.

2. The display reads METER FACTOR? {###.#######} (Default {012.000000}). Press Shift + Change to enter Edit Mode. Use the Right/Left arrow keys to move the cursor under the digits you want to change. Use the up/down arrow keys to change the digits to the desired values. In the case of this example, continue this procedure until the display reads [018.220000]. Use the Right arrow key to move the cursor out past the right bracket to save the setting. The display then reads METER FACTOR? {018.219998}. Note that in some cases, as with this example, a slightly different
value will appear. The magnitude of this difference is insignificant. Press the Right arrow key again.

— NOTE —
To determine the correct meter factor, refer to “Determining the Meter Factor” on page 18.

3. The display reads RATE FORMAT? {#####.#} This format can be changed, if necessary, to accommodate your flow rate.
 a. If no change is required, press the Right arrow key.
 b. To change the format, press Shift + Change to enter Edit Mode. Then use the up/down arrow keys to step through the choices. When you reach the format you want, press the Right arrow key.

4. The display reads FORWARD URV? {#####.#} (Default {00100.0}). Press Shift + Change to enter Edit Mode. Use the Right/Left arrow keys to move the cursor under the digits you want to change. Use the up/down arrow keys to change the digits to the desired values. In the case of this example, continue this procedure until the display reads [00150.0]. Use the Right arrow key to move the cursor out past the right bracket to save the setting. The display then reads FORWARD URV? {00150.0}.

5. Now that all changes have been made, press the Right arrow key. You are asked Go On-Line? Reply Yes by pressing the Right arrow key. Press the Right arrow key again to begin displaying flow measurements.

Foundation Fieldbus Protocol

Your transmitter has been preconfigured at the factory to the settings shown in Appendix B. Compare your needs to the factory configuration and note the changes to the configuration you must make.

If the transmitter is not connected to a flowtube or IMTSIM, it is necessary to put a jumper wire between terminals Coil 1 and Coil 2 and also to provide power to the transmitter.

This section describes the procedures to quick start the transmitter from the optional local keypad/display. Note that after you quick start the transmitter from the local keypad, you should use the fieldbus host to ensure that parameter values associated with the host are changed to agree with those changed from the local keypad/display. Otherwise, mismatch errors occur when you attempt to place the transmitter into Auto mode.

To make changes to the configuration using the local keypad/display, go to 1 TOP LEVEL/Setup by pressing the Left arrow repeatedly until the display reads 1 TOP LEVEL. Then use the Up/Down arrow keys to go to 1 TOP LEVEL/Setup. The procedure to change your configuration is demonstrated by the following example:

♦ Engineering units (EGUs) in GPM (factory default setting)
♦ Forward direction of flow (Unidir positive - factory default setting)
♦ Flow range 0 to 150 GPM
♦ Flowmeter factor of 18.22 (refer to “Determining the Meter Factor” on page 18)
1. Note that the factory default engineering units is already configured as GPM, so no change is required.

2. Note that the factory Output mode is also already configured as UniDir positive, so no change in the direction is required.

3. You must enter your flow upper range value however. To do this:
 a. Go to Setup Level 2 by pressing the Right arrow key. Next move to 2 SETUP Outputs with the Down arrow key. Then move to 3 OUTPUTS Output Mode with the Right arrow key.
 b. Use the Down arrow key to go to 3 OUTPUTS Range Info and the Right arrow key to go to FORWARD URV? {#####.#} GPM (Default {00100.0}).
 c. Press the Shift + Change keys to enter Edit mode. You are asked Go Offline? Reply Yes by pressing the Right arrow key. The display shows FORWARD URV? [#####.#] GPM.
 d. Use the Right/Left arrow keys to move the cursor under the digits you want to change. Use the Up/Down arrow keys to change the digits to the desired values. In the case of this example, continue this procedure until the display reads [00150.0].
 e. Using the Right arrow key, move the cursor under the right bracket and press the key to enter the URV. The display reads FORWARD URV? {150.0} GPM.
 f. Press the key again to move back to 3 OUTPUTS Range Info.

4. Lastly, you have to enter your flowmeter factor. To do this:
 a. Use the Left arrow key to move to the Level 2 menu, 2 SETUP Outputs.
 b. Press the Down arrow key six times to move to 2 SETUP Calibration and the Right arrow key to move to the Level 3 menu, 3 CALIBRATION Meter Factor. See Figure A-5.
 c. Use the Right arrow key to move to MFACTOR FORMAT? {###.#######}. This format can be changed, if necessary, to accommodate the meter factor.
 d. Use the Right arrow key to move to METER FACTOR? {###.#######} (Default {012.000000}. Then press Shift + Change to enter Edit mode.
 e. Use the Right/Left arrow keys to move the cursor under the digits you want to change. Use the Up/Down arrow keys to change the digits to the desired values. In the case of this example, continue this procedure until the display reads [018.220000]. Use the Right arrow key to move the cursor out past the right bracket to save the setting. The display then reads METER FACTOR?
NOTE

To determine the correct meter factor, refer to “Determining the Meter Factor” on page 18.

f. Press the Right arrow key again. The display reads 3 CALIBRATION Meter Factor.

5. Now that all changes have been made, press the Left arrow key until you are asked Go On-Line? Reply Yes by pressing the Right arrow key. To display flow measurement, press the Right arrow key once more.

CAUTION

If you change the upper range value or engineering units in the Transducer Block with the local display pushbuttons without making a corresponding change in the corresponding Analog Input Blocks from a fieldbus host, a mismatch error occurs and the Analog Input Block reverts to Out of Service mode.

Determining the Meter Factor

First find the “Cal Factor” or “IMT25 Cal Fact” on the flowtube data label.

If the flowtube data label has a “IMT25 Cal Fact.” listing, use that value as the “Meter Factor.”

If only a “Cal Factor” value is found on the flowtube data label, that value must be multiplied by the appropriate factor from Table 2 to calculate the “Meter Factor.”

Table 2. Meter Factor Multipliers

<table>
<thead>
<tr>
<th>Line Size (in)</th>
<th>8300 Flowtubes</th>
<th>Multiply by Factor</th>
<th>Line Size (in)</th>
<th>8000A-W and 9300A Flowtubes</th>
<th>Multiply by Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 S30H</td>
<td>0.9938</td>
<td></td>
<td>0.062</td>
<td>S01SA</td>
<td>1.0034</td>
</tr>
<tr>
<td>1 S301</td>
<td>0.9967</td>
<td></td>
<td>0.125</td>
<td>S01EA</td>
<td>1.0033</td>
</tr>
<tr>
<td>1.5 S31H</td>
<td>0.9960</td>
<td></td>
<td>0.25</td>
<td>S01QA</td>
<td>1.0011</td>
</tr>
<tr>
<td>2 S302</td>
<td>0.9964</td>
<td></td>
<td>0.5</td>
<td>S00HA</td>
<td>1.0032</td>
</tr>
<tr>
<td>3 S303</td>
<td>0.9974</td>
<td></td>
<td>1</td>
<td>S001A</td>
<td>1.0011</td>
</tr>
<tr>
<td>4 S304</td>
<td>0.9961</td>
<td></td>
<td>1.5</td>
<td>S001A</td>
<td>1.0011</td>
</tr>
<tr>
<td>6 S306</td>
<td>0.9947</td>
<td></td>
<td>2</td>
<td>S001A</td>
<td>1.0011</td>
</tr>
<tr>
<td>8 S308</td>
<td>0.9946</td>
<td></td>
<td>3</td>
<td>S003A</td>
<td>0.9985</td>
</tr>
<tr>
<td>10 S310</td>
<td>0.9941</td>
<td></td>
<td>4</td>
<td>S004A</td>
<td>0.9996</td>
</tr>
<tr>
<td>12 S312</td>
<td>0.9948</td>
<td></td>
<td>6</td>
<td>S006A</td>
<td>0.9981</td>
</tr>
<tr>
<td>14 S314</td>
<td>0.9945</td>
<td></td>
<td>8</td>
<td>S008A</td>
<td>1.0001</td>
</tr>
<tr>
<td>16 S316</td>
<td>0.9943</td>
<td></td>
<td>10</td>
<td>S010A</td>
<td>1.0001</td>
</tr>
<tr>
<td>18 S318</td>
<td>0.9950</td>
<td></td>
<td>12</td>
<td>S012A</td>
<td>1.0001</td>
</tr>
<tr>
<td>20 S320</td>
<td>0.9954</td>
<td></td>
<td>14</td>
<td>S014A</td>
<td>1.0001</td>
</tr>
<tr>
<td>24 S324</td>
<td>0.9962</td>
<td></td>
<td>16</td>
<td>S016A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>S018A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>S020A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>S024A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>S026A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>S028A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>S030A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>S032A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td>S034A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>S036A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>S038A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>S040A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>S042A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>S044A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>S046A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>S048A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>S050A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>S052A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>S054A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>S056A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>S058A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>S060A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>S062A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>S064A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>S066A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>S068A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>S070A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>S072A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td>S074A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>S076A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>S078A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>S080A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>S082A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>S084A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>S086A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>88</td>
<td>S088A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>S090A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92</td>
<td>S092A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>S094A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td>S096A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>S098A</td>
<td>1.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>S100A</td>
<td>1.0001</td>
</tr>
</tbody>
</table>
Example:

A (3-inch) 8303-... tube with only “Cal Factor” listed:

i.e., CAL FACTOR = 7.2911
8303 “Multiply By Factor” = 0.9974
Meter Factor = 7.2911 * 0.9974 = 7.2721

--- NOTE ---
Flowtube models 9100A, 9200A, and 9308 through 9316 have “IMT25 Cal Fact” on the flowtube data label. Therefore, no multiplication factor is required.

If you are using a 2800 Series “60 Hz” Flowtube (without an “IMT25 Cal Factor” on the data label) with your IMT25 Transmitter, you can use the nominal factor shown in Table 3. If your need a greater accuracy than this factor provides or if you have a 2800 Series “50 Hz” Flowtube, contact Global Customer Support.

Table 3. Nominal Meter Factors for IMT25 Transmitter used with 2800 Flowtube

<table>
<thead>
<tr>
<th>Nominal Line Size</th>
<th>Flowtube Type*</th>
<th>Nominal Factor</th>
<th>Nominal Line Size</th>
<th>Flowtube Type</th>
<th>Nominal Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>T</td>
<td>1200</td>
<td>8</td>
<td>T</td>
<td>0.254</td>
</tr>
<tr>
<td>1/4</td>
<td>T</td>
<td>454</td>
<td>8</td>
<td>A</td>
<td>0.285</td>
</tr>
<tr>
<td>1/2</td>
<td>T</td>
<td>63.2</td>
<td>10</td>
<td>T</td>
<td>0.226</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>25.6</td>
<td>10</td>
<td>A</td>
<td>0.252</td>
</tr>
<tr>
<td>1 1/2</td>
<td>T</td>
<td>11.7</td>
<td>12</td>
<td>T</td>
<td>0.136</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>7.6</td>
<td>12</td>
<td>A</td>
<td>0.143</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>10.7</td>
<td>14</td>
<td>A,N,T</td>
<td>0.097</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>3.6</td>
<td>16</td>
<td>A,N,T</td>
<td>0.057</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>3.8</td>
<td>18</td>
<td>A,N,T</td>
<td>0.043</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>1.93</td>
<td>20</td>
<td>A,N,T</td>
<td>0.029</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2.5</td>
<td>24</td>
<td>A,N,T</td>
<td>0.016</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0.546</td>
<td>30</td>
<td>A,N,T</td>
<td>0.007</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0.630</td>
<td>36</td>
<td>A,N,T</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* A = Polyurethane; T = Teflon; N = Neoprene
3. Operation

Operation from Keypad/Display Panel

For local operation, configuration, and calibration, all operator entries are made through a 5-button keypad and all data is presented on a 2-line x 16 character LCD display. The keypad/display of the IMT25 Transmitter is shown in Figure 1. Information on various types of display is shown in Figure .

![IMT25 Magnetic Flow Transmitter — Keypad/Display](image)

All required functions are accomplished by using the four arrow keys alone and in combination with the Shift key. Table 4 explains the function of each key.
Table 4. Functions of Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>Move up in the product structure. Scroll up in menu, list of characters, or on-line Help message.</td>
</tr>
<tr>
<td>SHIFT + RESET</td>
<td>Reset totals and empty pipe count.</td>
</tr>
<tr>
<td>∨</td>
<td>Move down in the product structure. Scroll down in menu, list of characters, or on-line Help message.</td>
</tr>
<tr>
<td>SHIFT + ACK</td>
<td>Acknowledge alarm or diagnostic messages.</td>
</tr>
<tr>
<td><</td>
<td>Move to the left in the product structure. Cancel parameter selection or data entry.</td>
</tr>
<tr>
<td>SHIFT + HELP</td>
<td>Access on-line Help.</td>
</tr>
<tr>
<td>></td>
<td>Move to the right in the product structure. Enter parameter selection or data entry.</td>
</tr>
<tr>
<td>SHIFT + CHANGE</td>
<td>Access Edit mode.</td>
</tr>
<tr>
<td>RESET + ACK</td>
<td>Change language (English/German) (Press and hold for 10 seconds)</td>
</tr>
</tbody>
</table>

DISPLAY TYPES

ALARM OR DIAGNOSTIC

ALARM 223
ALARM HIGHFLOW

LONG DISPLAYS

TUBE MS CODE
T25-PADB-M-ACG-X

EDITABLE DATA

TAG NUMBER
{FT154A_ _ _ _ _ _ _ _ }

DATA ENTRY

TAG NUMBER
[FT154A_ _ _ _ _ _ _ _]

ON-LINE HELP

This is a typical Help Message. Press the

Figure 2. IMT25 Magnetic Flow Transmitter — Displays

Top Level Menu

The Top Level menu displays the following modes – Measurements, Status, Identity, Quick Start (in FoxCom and HART transmitters), Test Mode, and Setup. You can switch from one to another in sequence by using the Up/Down arrow keys. To enter the second level menu from a particular top level screen, press the Right arrow key. To return to the top level from a second level menu item, press the Left arrow key. The level of the first, second, third, and fourth level menus is indicated by the digit appearing as the first character in Line 1 of the display; a 1 indicates Level 1 (Top Level), a 2 indicates Level 2, and a 3 indicates Level 3, etc.

The top level menu is shown in Figure 3. For a complete presentation of all menu structures, refer to Appendix A.
Figure 3. Transmitter Modes and Their Basic Functions

1 TOP LEVEL Measurements
- Measurements
- Parameters

FOR DETAILS SEE MEASUREMENT MODE PAGE 24

1 TOP LEVEL Status
- Status
- Parameters

FOR DETAILS SEE STATUS MODE, PAGE 25

1 TOP LEVEL Identity
- Identity
- Parameters

FOR DETAILS SEE IDENTITY MODE, PAGE 30

1 TOP LEVEL Quick Start
- Quick Start
- Parameters

FOR DETAILS SEE QUICK START, PAGE 15.

1 TOP LEVEL Test Mode
- Special Calibration
- Check Mode

SEE MI 021-391.

1 TOP LEVEL Setup
- 2 SETUP
- System

FOR DETAILS SEE SETUP MODE PAGE 32 AND APPENDIX A.

THIS IS THE NORMAL OPERATION MODE. IT DISPLAYS FLOW RATES AND/OR TOTALS. IT ALSO INDICATES IF ALARM OR DIAGNOSTIC CONDITIONS EXIST. THE SELECTED DEFAULT MEASUREMENT (FLOW RATE OR TOTALIZER VALUE) WILL BE DISPLAYED WHEN THE TRANSMITTER IS TURNED ON.

THIS MODE PROVIDES DETAILS ABOUT ALL THE TRANSMITTER OUTPUT VALUES, STATE OF CONTACT INPUTS AND OUTPUTS, AZL STATE, ALARM CONDITIONS, DIAGNOSIS ERRORS, AND MORE.

THIS MODE IS USED TO SAVE AND DISPLAY REFERENCE INFORMATION SUCH AS TAG NAME AND CALIBRATION DATES. THE TRANSMITTER SOFTWARE VERSION NUMBER CAN ALSO BE FOUND HERE.

THIS MODE CAN BE USED TO QUICK START YOUR TRANSMITTER IF GPM FLOW UNITS ARE USED AND ONLY DIGITAL AND 4-20 mA OUTPUTS ARE NEEDED.

THIS MODE CAN BE USED IN CONJUNCTION WITH AN IMTSIM UNIT TO VERIFY THE CALIBRATION OF THE TRANSMITTER.

THIS MODE IS USED TO CUSTOMIZE (CONFIGURE) THE TRANSMITTER TO YOUR APPLICATION. THIS INCLUDES DEFINING FLOW RATE RANGES, OUTPUT USED, ALARM CONDITIONS, AND SO FORTH.
Measurements Mode

The Measurements mode, which is your main operating mode, is displayed upon startup. Depending on the transmitter configuration, it has up to seven displays, any of which may be set as the startup default. All screens can be scrolled with the Up/Down arrow keys.

- Rate (EGU) — Shows current flow rate (forward or reverse) in the selected engineering units.
- Rate (% Range) — Shows current flow rate (forward or reverse) as a percentage of full scale URV.
- Fwd Tot — Shows current value of the forward totalized flow in engineering units. Use the Net Tot display to reset.
- Rev Tot — Shows current value of the reverse totalized flow in engineering units. Use the Net Tot display to reset.
- Net Tot — Shows current value of the net totalized flow (forward total - reverse total) in selected engineering units. Press Shift + Reset to reset the displayed total to zero. Resetting Net Tot also resets Fwd Tot and Rev Tot. It does not reset Gr Tot. If Reset Totals is passcode protected, the message Enter Passcode appears.
- Grand Tot — Shows current value of the grand total flow in engineering units. Press Shift + Reset to reset the displayed total to zero. Resetting Gr Tot does not reset Fwd Tot, Rev Tot, and Net Tot. If Reset Totals is passcode protected, the message Enter Passcode appears.

If the Dual Display feature is configured On, a combination of two of these parameters can be displayed at once. A typical dual display, in which Line 1 shows flow rate and Line 2 shows the present forward total, is shown below. Units may not be displayed or may be truncated.

```
+35.67
+12345.8
```

You may step through the displays of each of these parameters with the Up and Down arrow keys. However, unless you specifically do so, the display defaults to that configured in Setup mode. The engineering units and formats used in the displays are also configured in Setup mode.
Status Mode

The Status mode enables you to view fourteen system parameters and thus assess the performance of the loop. You may not edit them in this mode. To step through the displays of the following parameters, use the up/down arrow keys:

- **Mode** — Shows the present operating mode: **On-Line, Off-Line, Override**, or **Calibrate**. This will normally display **On-Line**. The other modes will only be displayed if someone else has changed the mode with an I/A Series Workstation, PC-Based Configurator, HART Communicator, or fieldbus host. **Off-Line** means...
that it has been taken off-line; **Override**, that the measurements cannot be relied upon because one or more of the outputs is at a preset value; and **Calibrate**, that the transmitter is in Calibration mode.

- **Alarm** — Shows the most current active alarm. If there are no active alarms but something is in the history buffer, the display reads **Alarms In Buffer**. If there are no active alarms and nothing in the buffer, display reads **No Alarms**.

- **Diagnostics** — Shows **No Diag**, **Diag Existed**, or **Diag Exists**. If a diagnostic problem exists, the second line identifies the problem. Help is available with the **Shift + Help** keys. An active diagnostic problem cannot be cleared; the problem must be corrected. **Diag Existed** means a diagnostic error did occur, but the condition has cleared and the transmitter is working correctly. However, the Diag icon will remain on the display until the diagnostic has been acknowledged. To clear, the transmitter must be in the Status mode with the diag window displayed. Then use the **Shift + Ack** keys.

- **Digital Output** — If the transmitter output is in Digital Output mode, the display shows whether the transmitter is configured for Unidirectional or BiDirectional flow. If the transmitter is not in Digital Output mode, the screen is not displayed.

NOTE

Digital and Analog Output are mutually exclusive. Only one of the two are displayed at any one time.

- **Analog Output** — If the transmitter output is in Analog Output mode, the display shows whether the transmitter is configured for **U** (unidirectional), **U/M1** (unidirectional multirange-range 1), **U/M2** (unidirectional multirange-range 2, **U/M3** (unidirectional multirange-range 3), **B/D** (bidirectional dual range), or **B/S** (bidirectional split range). If the transmitter is not in Analog Output mode, the screen is not displayed.

NOTE

Digital and Analog Output are mutually exclusive. Only one of the two are displayed at any one time.

Table 5. Analog Output Configuration

<table>
<thead>
<tr>
<th>Display</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UniDirectional Flow Single Range</td>
</tr>
<tr>
<td>U/M1</td>
<td>UniDirectional Flow Multi-Range Range 1 Active</td>
</tr>
<tr>
<td>U/M2</td>
<td>UniDirectional Flow Multi-Range Range 2 Active</td>
</tr>
<tr>
<td>U/M3</td>
<td>UniDirectional Flow Multi-Range Range 3 Active</td>
</tr>
<tr>
<td>B/D</td>
<td>BiDirectional Flow Dual Range</td>
</tr>
<tr>
<td>B/S</td>
<td>BiDirectional Flow Split Range (mA reading less than 12 indicates reverse flow, greater than 12, positive flow)</td>
</tr>
<tr>
<td>"UNKNOWN"</td>
<td>Multi-Range is configured, but both contact inputs used to select the active range are in inactive state</td>
</tr>
</tbody>
</table>
♦ **Pulse Output** — Shows **Off** or the state of the pulse output shown in Table 6.

Table 6. Pulse Output States

<table>
<thead>
<tr>
<th>Display</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Rate Hz</td>
<td>Pulse Output set to create a frequency signal proportional to flow. Second line shows current output Hz.</td>
</tr>
<tr>
<td>Pulse Total %</td>
<td>Pulse Output set to generate pulses scaled to equal a volume of fluid; i.e., gallons. Second line shows the percent of the next pulse in the buffer. When the buffer fills to 100%, it issues the next pulse.</td>
</tr>
</tbody>
</table>

♦ **Contact In 1 and Contact In 2** — Shows the current state of the Contact Inputs. The possible states are as shown in Table 7.

Table 7. Contact Input Status

<table>
<thead>
<tr>
<th>Display</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Contact Input configured Off.</td>
</tr>
<tr>
<td>Inactive</td>
<td>There are no Ack Alarm, Reset Totals, or Signal Lock actions taking place.</td>
</tr>
<tr>
<td>Invalid</td>
<td>Multi-Range is configured for one contact input and not the other, or both contacts are off.</td>
</tr>
<tr>
<td>Ack Alarm</td>
<td>Contact is acknowledging an alarm.</td>
</tr>
<tr>
<td>Reset Net Tot</td>
<td>Contact is resetting Fwd Tot, Rev Tot, and Net Tot.</td>
</tr>
<tr>
<td>Reset Gr Tot</td>
<td>Contact is resetting Gr Tot.</td>
</tr>
<tr>
<td>Reset All Tot</td>
<td>Contact is resetting All Totals</td>
</tr>
<tr>
<td>Signal Lock</td>
<td>Contact has “locked” the outputs (fully downscale)</td>
</tr>
<tr>
<td>Multi-Range</td>
<td>Contact is configured to switch ranges.</td>
</tr>
</tbody>
</table>

♦ **Relay Out 1 and Relay Out 2** — Shows the current function of Relay Output 1. The possible functions are shown in Table 8.

Table 8. Relay Output Status

<table>
<thead>
<tr>
<th>Display</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Relay Output configured Off.</td>
</tr>
<tr>
<td>Inactive</td>
<td>No alarm or diagnostic conditions are activating the Relay Output.</td>
</tr>
<tr>
<td>Forward Dir</td>
<td>Flow in forward direction.</td>
</tr>
<tr>
<td>Reverse Dir</td>
<td>Flow in reverse direction.</td>
</tr>
<tr>
<td>High Rate Alm</td>
<td>High Rate Alm has activated the Relay Output.</td>
</tr>
<tr>
<td>Low Rate Alm</td>
<td>Low Rate Alm has activated the Relay Output.</td>
</tr>
<tr>
<td>High Tot 1 Alm</td>
<td>High Tot 1 Alm has activated the Relay Output.</td>
</tr>
<tr>
<td>High Tot 2 Alm</td>
<td>High Tot 2 Alm has activated the Relay Output.</td>
</tr>
<tr>
<td>Empty Pipe Alm</td>
<td>Empty Pipe Alm has activated the Relay Output.</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>One of the diagnostics has activated the Relay Output.</td>
</tr>
<tr>
<td>Test Mode</td>
<td>Transmitter is in the Test Mode.</td>
</tr>
</tbody>
</table>
AZL Detect (Empty Pipe Det) — The intent of the AutoZeroLock Detection (Empty Pipe Detection) feature is explained in “AutoZeroLock (Empty Pipe)” on page 53.

If the AutoZeroLock (Empty Pipe) detector is configured On, the display shows:

- **EPD Inactive, EPD Active, or EPD Needs Setpnt** (FoxCom)
- **AZL Inactive, AZL Active, or AZL Needs Setpnt** (HART)
- **Inactive, Active, or AZL Needs Cal** (Fieldbus).

When AZL (EPD) is active, the outputs are locked at zero. If AZL (EPD) is configured Off, the status display shows **Off**.

WARNING

Do not take any action that can cause danger to personnel or damage to equipment based on the assumption that a pipe is empty or full because of an AutoZeroLock (Empty Pipe Detection) indication.

AZL Count (Empty Pipe Cnt) — Shows the cumulative count (maximum of 255) of AZL (empty pipe) conditions that have occurred since the last reset. To reset the count to zero, press **Shift + Reset**. Note that in some cases several counts may occur for one emptying of the pipeline.

Noise Reduction — Shows whether the noise reduction function is configured On or Off.

Write Protection — Shows whether the Write Protection dip switch is in the On position so that no Setup (configuration) changes may be made. This feature is usually only used in custody transfer applications or for another reason that you want to assure that the configuration is not changed. For the procedure to change the setting of this switch, see MI 021-387.
Status Menu Structure

MODE
- OFF-LINE
- ON-LINE
- OVERRIDE
- CALIBRATE

ALARM 228
- HIGH FLOW

16 alphanumeric characters

DIAG 118
- COIL UNSTABLE

16 alphanumeric characters

If XMTR is DIGITAL output mode:
- DIGITAL OUTPUT
 - UNIDIRECTIONAL
 - BIDIRECTIONAL

If XMTR is ANALOG output mode:
- ANALOG OUTPUT
 - U
 - U/M1
 - U/M2
 - B/D
 - B/S
 - U/M3

PULSE RATE
- ###### Hz
- OFF
- PULSE RATE
- PULSE TOTAL

CONTACT IN 1
- INACTIVE
- INVALID
- ACK ALARM
- RESET NET TOT
- RESET GR TOT
- RESET ALL TOT
- SIGNAL LOCK
- MULTI-RANGE

CONTACT IN 2
- SIGNAL LOCK

RELAY OUT 1
- INACTIVE
- INVALID
- FORWARD DIR
- REVERSE DIR
- HIGH RATE ALM
- LOW RATE ALM
- HIGH TOT 1 ALM
- HIGH TOT 2 ALM
- EMPTY PIPE ALM
- DIAGNOSTICS
- TEST MODE

RELAY OUT 2
- EMPTY PIPE

AZL DETECT
- AZL OFF
- AZL ACTIVE
- AZL INACTIVE
- AZL NEEDS SETPNT

AZL COUNT
- ###

NOISE REDUCTION
- OFF
- ON

WRITE PROTECT
- OFF
- ON

THE STATUS MENU ALLOWS VIEWING ONLY, NO EDITING. USE THE Δ AND \(\Uparrow \) ARROW KEYS TO MOVE THROUGH THE STRUCTURE.

WITH EMPTY HISTORY BUFFERS, DISPLAY READS NO ALARMS OR NO DIAG. WITH NO ACTIVE ALARMS/ DIAGNOSTICS BUT SOMETHING IN THE BUFFER, DISPLAY READS ALARMS IN BUFFER OR DIAGS IN BUFFER.

PRESS SHIFT + ACK (\(\Uparrow \)) FROM ANYWHERE IN USER INTERFACE TO ACKNOWLEDGE ALARMS AND DIAGNOSTICS AND CLEAR BUFFERS. IF CURRENTLY IN THESE NODES, EACH OF THE ITEMS IN THE BUFFER WILL BE DISPLAYED FOR ONE SECOND BEFORE CLEARING. ACKNOWLEDGMENT BY A CONTACT INPUT, CLEARS BUFFERS IMMEDIATELY.

INVALID MEANS MULTI-RANGE IS CONFIGURED FOR ONE CONTACT INPUT AND NOT THE OTHER, OR THAT BOTH CONTACTS ARE OFF (NO RANGE).

INACTIVE IS RELATIVE TO ACK ALARM, RESET TOTALS, AND SIGNAL LOCK FOR CONTACT INPUTS.

INACTIVE IS RELATIVE TO ALARMS FOR RELAY OUTPUTS.

SHIFT + RESET (Δ) RESETS THE DISPLAYED EMPTY PIPE COUNT COUNTER.

AZL SHOWN AS EDP ON FOXCOM PRODUCT

Figure 5. Structure Diagram – Status Menu

29
Identity Mode

The Identity mode enables you to view the identity parameters. Setup mode can be used to edit these parameters except for those indicated with an asterisk (*) which are factory set. To step through the list of the following parameters, use the Up and Down arrow keys.

- TAG NUMBER (FoxCom and Fieldbus only)
- LOCATION (FoxCom and Fieldbus only)
- TAG NAME (displayed only if in Digital Output mode)
- DEVICE NAME (displayed only if in Digital Output mode)
- HART TAG (HART only)
- HART DESCRIPTION (HART only)
- HART MESSAGE (HART only)
- VERIFY SIM DATE (HART only)
- VERIFY SIM NAME (HART only)
- XMTR MS CODE (transmitter model code)*
- XMTR SERIAL NUM (transmitter serial number)*
- TUBE MS CODE (flowtube model code)
- TUBE SERIAL NUM (flowtube serial number)
- SOFTWARE VER (software version)*

On strings over 16 characters, left and right arrow icons indicate that there are off screen characters. Use the Left and Right arrow keys to view these characters.

| TUBE MS CODE 8302-SATA-TSJ-GF |
Quick Start Mode (FoxCom and HART)

The Quick Start mode is a simplified setup (configuration) menu. For many applications it is all that is needed to setup the transmitter to provide accurate flow measurements. Quick Start can be used for applications requiring only:

- A 4-20 mA output based on a flow rate in (US) GPM
- The transmitter display to show a flow rate in (US) GPM
- A FoxCom digital or HART flow rate signal.

For details, see “Quick Start” on page 15.

Use Setup Mode for a full configuration of your transmitter.
Test Mode

The Test mode provides a way to check the operation and calibration of the transmitter. Details of using this function are covered in System Maintenance Instruction, MI 021-391.

To use Test mode, you must have an IMTSIM flowtube simulator to connect to the transmitter in place of the flowtube. Test mode provides three choices:

- **OFF** returns the transmitter to normal operation
- **Test Mode A** (See test description below)
- **Test Mode B** (See test description below)

In both test modes, the display initially shows the word “Testing” for about a minute while it performs internal checks. It then displays a mV/Amp value that should equal the dial setting on the IMTSIM. When this value stops flashing, it has stabilized and is ready to read.

The differences between Modes A and B relate to the 4 to 20 mA and pulse rate outputs. Mode B sets the outputs to 100% for the maximum IMTSIM setting, which is 8 mA. This makes it easy to compute the correct output percentages for the other dial settings. Since Mode A does not alter the ranging of the transmitter, the dial settings must be calculated using the flowtube factor and URV settings. When the transmitter exits from Test mode and returns to normal operation, the configuration that existed before testing is restored.

Setup Mode

The Setup mode enables you to configure your system, output, alarm, diagnostic, identity, passcode, transmitter, and calibration parameters. You can enter this menu while the transmitter is on-line to review parameter settings. The transmitter output is not disturbed without ample warning. If you press **Shift + Change** you are warned that you are going off-line and are asked if you want to do so. Indicate your reply with the left or right arrow keys.

![Go Off-Line?](No Yes]

This can also be a passcode protected mode. So after the initial configuration, you may need a password to enter this mode.

NOTE
If you lose your passcode, contact Global Customer Support for assistance.

For detailed instructions on how to configure your transmitter, see “Configuration” on page 39. The structural diagrams of the Setup menu begins with Figure 13 of Appendix A on page 62.

CAUTION

With a FOUNDATION Fieldbus transmitter, if you make any changes in some Transducer Block parameters from the local keypad/display, you **must** also make corresponding changes in the corresponding Analog Input Blocks from the fieldbus host before you attempt to place the transmitter in service. Failure to do so causes a mismatch error.
Alarm Actions

Conditions That Can Be Alarmed

- High Rate of Flow
- Low Rate of Flow
- High Forward Total 1
- High Forward Total 2
- AutoZeroLock (Empty Pipe Detect)

Actions of Transmitter During Alarm Conditions

Display — When an alarm condition is present, there is a triangular icon in the top position of the top line []. Optionally, the entire display can be configured to blink.

--- NOTE ---
A diagnostic condition also causes the triangular icon to be displayed.

Outputs — Alarms can be configured to have no effect on the outputs or can force them to go fully upscale or downscale.

Relay Contact Outputs — Contact output relays can be configured to respond to a specific alarm or any alarm. (Refer to “Suppress Feature” below).

Status Mode — When an alarm condition occurs, the Status mode can provide an definition of the cause of the alarm, if the alarm condition still exists, or what the alarm was if the condition passed. Alarm conditions are defined as either No Alarms or a definition of the alarm, such as Alarm High Flow. If the alarms are configured for Manual Clear, the message Alarms in Buffer appears if an alarm condition that no longer exists and has not been acknowledged. If an alarm is acknowledged when the Alarms in Buffer message is displayed, the alarm condition is displayed briefly before it is cleared.

Clearing Alarms — The alarm clear function can be configured as Auto or Manual. In Auto, all evidence of the alarm clears when the alarm condition no longer exists. In Manual, the definition of the alarm condition changes to Alarms in Buffer when the alarm condition no longer exists. The alarm must be acknowledged to clear it from the buffer.

Acknowledging an Alarm — Three methods are available to acknowledge alarms when they are configured for manual clear. These methods are only effective after the condition that caused the alarm no longer exists. The methods are:

- Pressing the Ack key while the Shift key is depressed.
- Using a HART Communicator.
- Using an external contact if one of the contact inputs was configured to acknowledge alarms.

--- NOTE ---
A power cycle or an off-line/on-line cycle (as in Setup mode) also clears the alarms that are in the buffer.
While the alarm condition continues to exist, acknowledging the alarms has the following effect:

- Does not affect the display action.
- Does not restore the outputs if they were configured to go high or low.
- Returns the Relay Output to the normal operation condition, but only if the Relay Output was also configured to allow the suppression feature.

When the condition that caused the alarm is corrected, the following will happen:

- The display icon and/or flashing stops if the alarms are configured to Auto Clear. If set for Manual Clear, the alarm has to be acknowledged to clear the display action.
- The Flow Rate Outputs return to normal without acknowledgment in either Auto or Manual Clear modes.
- The Relay Output returns to normal if alarms are set to Auto Clear. If set for Manual Clear, the alarm has to be acknowledged to return the Relay Output to the normal operation state.

Suppress Feature — The suppress feature can cause an output relay to revert to the inactive state when an alarm is acknowledged and the alarm condition still exists. For example, you can have a relay output that is configured for High Rate Alarm and is connected to an alarm horn. When a High Rate Alarm occurs, the horn can be silenced via an alarm acknowledge if the suppress feature is on. The horn does not sound again unless the flow rate falls below the alarm level and subsequently rises above that level.

Diagnostic Actions

The transmitter performs diagnostic tests in the background while it is computing flow. The tests cover:

- Process conditions which preclude a valid measurement
- Hardware failure (transmitter, flowtube, wiring, etc.)
- Invalid configuration.

If a Diag error exists, the transmitter cannot reliably compute flowrate. Therefore, the transmitter flowrate outputs go upscale or downscale depending on the transmitter configuration. The display will show the Diag icon in the upper right corner and the display will flash if configured to do so.

The Status mode can be helpful in identifying the problem. The Diag window in Status gives a brief description of the error and provides on-line Help with the **Shift + Help** keys. If the Diag message is **Diags Exist**, the problem still exists and cannot be cleared, the problem must be fixed to restore flow measurement. If the Status message is **Diags Existed**, the condition no longer exists and the transmitter is working normally. However, the Diag must be acknowledged to restore the display and Relay Output (if used) to normal.
Acknowledging Diagnostics

The best way to acknowledge a Diag is to use the **Shift + Ack** keys while the display shows the Diag window in the Status mode. Another way to clear the Diag is to cycle power off and on. The advantage of using the Status mode method is that the second line of the display shows what problem existed. With a HART transmitter, a HART Communicator can also be used to clear diagnostic messages.

Write Protect Switch

The write protection DIP switch, located on the printed wiring board (refer to Figure 7) attached to the transmitter cover, allows or prevents anyone from changing the configuration of the transmitter or resetting the totalizer. This feature is usually only used in custody transfer applications or for another reason the user wants to ensure that the configuration and or totals will not be changed. Therefore, the switch is usually placed in the “disable” position (factory default position). Placing the switch in the “enable” position, engages the protection.

--- **NOTE**

A change in the write protect switch position does not take effect until power is turned off and on again.

--- **CAUTION**

Do **not** touch the service switch. It is for use by service personnel only. The transmitter will not operate correctly if this switch is in the enable position. If this switch has been moved to the enable position, return it to the disable position and turn power off and on.
Totalizer Operation

The Totalizer displays four totals which are stored in a nonvolatile memory.

- Forward (flow direction) Total
- Reverse (flow direction) Total
- Net Total (Forward Total minus Reverse Total)
- Grand Total (Forward Total minus Reverse Total since last reset of Grand Total)

You can specify the units of the pulse (for example, gallons) and the format of the display (for example, xxxxxx.x). This example given shows tenths of a gallon. The units selected apply to all four totals but the format of the Grand Total can be different than the other totals to display larger values.

The totalizer and alarm functions can be combined to drive the relay outputs. These relays can be used for remote alarm of totals or to close valves.
Resetting Totals

Forward, Reverse, and Net Totals are reset as a group. Grand Total is reset separately.

Totals can be reset with the keypad/display, an external contact, a PC-Based Configurator, a HART Communicator, or a fieldbus host. To reset with the keypad/display, use the following procedures:

- To reset **Fwd Tot** (forward total), **Rev Tot** (reverse total), and **Net Tot** (net total) to zero, go to **Net Tot** in Measurements mode and press **Shift + Reset**. If Reset Totals is passcode protected, the message **Enter Passcode** appears. To proceed, enter the passcode.

- To reset **Gr Tot** (grand total) to zero, go to **Gr Tot** in Measurements mode and press **Shift + Reset**. If Reset Totals is passcode protected, the message **Enter Passcode** appears. To proceed, enter the passcode.

- If write protection is enabled, you cannot reset any totals. You must move the Write Protect switch to the disable position and then turn power off and on to disable write protection.

- To reset Empty Pipe Count, go to **Empty Pipe Cnt** in Status mode and press/hold **Shift + Reset**.

Totalizer Overflow

Totalizer overflow (rollover) is indicated if **Alarm Clear** was configured as **Manual**. If so configured, rollover will cause the alarm icon to be displayed and the status mode will show **Alarms in Buffer**. When the alarm is acknowledged, the display will flash **Total Rollover** once for every rollover (maximum of 10 times).

Resetting AZL (EDP) Count

To reset **AZL (EDP) Count**, go to the **AZL Count** (EDP Count) display in Status mode and press/hold **Shift + Reset**.

On-Line Help

Context-sensitive on-line help messages can be displayed by pressing **Shift + Help** key. The message displayed pertains directly to the parameter currently displayed on the screen. A typical Help screen is shown below.

This is a typical HELP message

The down arrow icon indicates that more information is available. Press the Down arrow key to display the additional information. Similarly, an up arrow icon indicates more information can be displayed by pressing the Up arrow key. To exit from the On-Line Help mode, press either the Left or Right arrow keys. Press the **Shift + Help** key while in On-Line Help to get help on the On-Line Help function.
Output Owner Priority Structure

The IMT25 can provide digital measurement values, an analog output, and a pulse output. Each of these output signals usually reflects the live process measurement. However, under special circumstances, a higher priority “owner” can control these outputs.

For example, the AutoZeroLock Detector or the manual Signal Lock function can lock all of the outputs to the Zero flow condition. Alternately, you can manually preset (or override) each of the outputs. Similarly, diagnostic and alarm conditions can cause the analog and pulse outputs to be forced to the configured “failure” setting.

In addition, the analog and pulse outputs are forced to the Zero flow condition when the transmitter is taken off-line for configuration using the optional keypad/display. Also, the analog output is frozen at 4.0 mA if the transmitter is configured for multi-drop operation of the HART communications output.

The following list summarizes the priority structure that determines ownership of the transmitter outputs. The highest priority functions are listed first.

- HART Multi-drop Operation (analog output only)
- Signal Lock or AutoZeroLock (all outputs)
- Manual Presets (all outputs)
- Off-Line condition (analog and pulse outputs)
- Diagnostic conditions (analog and pulse outputs)
- Alarm conditions (analog and pulse outputs)
- Live process conditions (all outputs)
4. Configuration

Preparing Your Transmitter for Configuration

Your transmitter can be configured before or after it is connected to a flowtube. If it is connected to a flowtube, you can proceed directly to configuration. If the transmitter is not connected to a flowtube or IMTSIM Simulator, it is necessary to put a jumper wire between terminals Coil 1 and Coil 2. It is also necessary to provide power to the transmitter.

--- NOTE ---
If the pipe is full, it does not matter whether or not the fluid is flowing. If the pipe is empty, there is a slight chance you will have diagnostic interruptions during configuration. If this is a problem, fill the pipe or use jumper wires to connect signal terminals B, SG, and W together.

Getting Started

There are four basic steps to changing the configuration of your transmitter in Setup mode to the requirements of your application using the keypad/display.

1. Determine what parameters have to be changed using the information in Table 9.
2. Enter the Setup (configuration) mode.
 Press the Left arrow key until the top line of the display shows 1 TOP LEVEL. Then use the Up or Down arrow key until the second line shows Setup. Press the Right arrow key to enter this mode.
3. Change the parameter values.
 The example in “Viewing and Changing Data” on page 41 illustrates the mechanics of changing the configured settings and values.
4. Exit the Setup mode.
 This step transfers the values you changed from a volatile memory used by Setup to the transmitter nonvolatile operating memory. The changes made in Setup are not enacted until the Setup exit procedure is complete. If the power is turned off before exiting Setup, the changes are lost.
 To exit the Setup mode, use the Left arrow key to move to the left in the menu structure until the display asks Go On-Line? A Yes reply (Right arrow) to this question completes the exiting of the Setup mode and returns the transmitter to the Measurements mode.

--- NOTE ---
There are some places in the Setup menu that do not respond to the Left arrow key. If there is no response to the Left arrow key, use the Right arrow key until you get to a location where the Left arrow key works.
Configuration Tools

Several tools exist to help you configure your transmitter using the keypad/display. They are:

- The configuration guide chart (see Table 9) — this guide shows what parameters must be checked or set.
- Appendix A — This shows how to get to the parameter location using the arrow keys and what parameter choices are available.
- Appendix B — This is a worksheet showing all the parameters, with the available choices or limits for each parameter, the factory default selections, and a space provided for you to write in the settings for your application.
- Configuration Checker and Display Help Messages — these features are part of the transmitter program. Pressing the Shift + Help keys brings parameter-specific help messages to the display. This help is available at any time during setup.

It is possible during the configuration process to choose conflicting parameters or not to provide all the settings necessary for the transmitter. If this happens, the triangular diagnostic icon will show in the upper right corner of the display when you return to the measurement mode. If the icon is there, press the Right arrow key. The display will read Setup Needed/Config Error or 1 TOP LEVEL/Measurements. If the Set Needed message appears, use Shift + Help to display details of the problem. If 1 TOP LEVEL is displayed, proceed to the Status mode and check the reason for the icon (see “Status Mode” on page 25).

Configuration Guide — How to Use

The first four columns of the configuration guide show specifically which parameters must be configured correctly to set up the particular transmitter outputs you want. The fifth identifies the optional and reference (Identity) features that can be configured.

The sixth column lists the page numbers of this instruction that contain a brief written description of the parameter. The seventh column refers to the figure number in Appendix A of the related software structure diagram for that parameter. This reference is helpful in finding the correct pages in Appendices A and B.
Viewing and Changing Data

In Setup (configuration) mode, you will need to move through a structure of parameters (using the arrow keys) to view and/or change the value or status of a particular parameter. The Up- and Down-arrow keys will also enable you to scroll through a menu in either direction. Structure diagrams, located in Appendix A, will aid you in doing this.

Any parameter shown in { } brackets can be edited. For details, refer to Figure on page 22.

The following example will show you how to use the keys in moving through the structure and in editing several parameters. For the example, we will configure the transmitter for a pulse rate URV.

Table 9. Configuration Guide

<table>
<thead>
<tr>
<th>Required for</th>
<th>Required for</th>
<th>Required for</th>
<th>Required for</th>
<th>Optional Features</th>
<th>For description, see heading on page listed</th>
<th>For menu, structure diagram, see figure listed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA Output</td>
<td>Pulse Rate Output</td>
<td>Pulse Total Output</td>
<td>Digital Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td>Flowtube Factor (Meter Factor)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td>Flow Rate Units (EGUs)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td>Line Frequency (50 or 60 Hz)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td>Output Mode (Analog or Digital)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analog Flow Mode (Uni- or Bi-directional Flow)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Digital Flow Mode (Uni- or Bi-directional Flow)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Range Flow Rates (URVs for all ranges)</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td>Flow Direction</td>
</tr>
<tr>
<td>Req</td>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pulse Output (Off, Rate, or Total)</td>
</tr>
<tr>
<td>Req</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pulse Rate, Values for URV and Hz at URV</td>
</tr>
<tr>
<td>Req</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Totalizer (Totalizer must be ON to use Pulse Total Output)</td>
</tr>
<tr>
<td>Req</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total EGU (Used for Totalizer and Pulse Total Output)</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Totalizer Format (affects max. value that can be displayed)</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flow Rate Display Setup</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td>Damping of Rate Output Signals (also affects Noise Reduction)</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td>Noise Reduction (works in conjunction with Rate Output Damping)</td>
</tr>
<tr>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rate Display Damping (only affects transmitter display)</td>
</tr>
<tr>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alarm Setup</td>
</tr>
<tr>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Output Relay Setup (Alarms, Flow Direction, Diagnostics, etc.)</td>
</tr>
<tr>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diagnostics (Fail-safe setup)</td>
</tr>
<tr>
<td>Ref</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Identity (Tag Number, Tube ID, etc.)</td>
</tr>
<tr>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passcodes (protect setup and/or totals)</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td>Contact Inputs (acknowledge alarms, reset totals, multi-range, and signal lock)</td>
</tr>
<tr>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td></td>
<td></td>
<td></td>
<td>AutoZeroLock detection (for alarm and/or auto signal lock)</td>
</tr>
</tbody>
</table>
of 150 GPM at a rate maximum frequency of 5000 Hz. In following this procedure, refer to Figure 8. We will begin at the Level 3 Output menu.

1. Use the Down arrow key to move from **Output Mode** to **Range Info** to **Pulse Out Mode**.

2. Use the Right arrow key to move to **Pulse Out Mode? {Off}**. The curly brackets indicate that the Off status is editable.

3. Press the **Shift + Change** keys to enter Edit mode. If you are not already Off-Line, the display will ask **Go Off-Line?** Reply yes by pressing the Right arrow key. The display will show **Pulse Out Mode? [Off]**. The plain brackets indicate that you are in Edit mode.

4. Use the Down arrow key to scroll through the menu. Stop at Pulse Rate. Press the Right arrow key to enter this selection. The display will show **Pulse Out URV? {#####.#} GPM**.

5. Press the **Shift + Change** keys to enter Edit mode. The display will show **Pulse Out URV? [#####.#] GPM**. The cursor will be under the left bracket.

6. Use the Right arrow key to move the cursor under the first digit. Use the Down arrow key to scroll the character list until the 0 appears. Use the Right arrow to move the cursor under the second digit. Scroll the list to find the 0. Select the 1, 5, 0, and 0 in a like manner. The display now reads the pulse out URV required in our example.

7. Using the Right arrow key, move the cursor under the right bracket and press the key twice to enter the pulse out URV and move to the next parameter. The display will change to **{00150.0} GPM** and then to **Rate Max Freq? {2000 Hz}**.

8. Press the **Shift + Change** keys to enter Edit mode. The display will show **Rate Max Freq? [2000 Hz]**.

9. Use the Down arrow key to scroll the menu until **5000 Hz** appears. Press the Right arrow key once to enter our selection and a second time to return to Pulse Out Mode.

Figure 8. Example of Structure Diagram
Use the arrow keys to go to the next parameter to be changed.

Setup of System Parameters

The structural diagram of the System menu is located on Figure 14 and Figure 15 beginning on page 63.

Default Screen

The first item to be considered in setting up your system is to decide what display you want your system to default to in Measurements mode. Your choices are:

- **Rate EGU** (Rate in engineering units)
- **Rate % Range** (Rate in percent of range)
- **Fwd Total** (Forward Total)
- **Rev Total** (Reverse Total)
- **Net Total**
- **Grand Total**
- **Dual Display** (a display of any two of the above if Dual Display is configured On (see next section).

The default setting is **Rate EGU**.

Dual Display

In configuring this parameter, first you need to decide whether you want to use the dual display mentioned immediately above. If you selected the **Dual Display** as your Default Screen, you must configure this parameter On. If you want to scroll to a Dual Display sometimes in Measurement mode, you should also configure it On. If you never intend to use it, configure it Off. The default setting is Off.

If you configure the **Dual Display** as On, you must select the display for Line 1 and for Line 2. You may pick these from the first six choices that were available for the Default Screen. The default setting for both Line 1 and Line 2 is **Rate EGU**.

Rate Display

Rate EGU

In the Rate EGU parameter specify the engineering units in which you want your flowrate to be displayed. You may pick from a menu of:

- **GPM** (gallons per minute)
- **GPH** (gallons per hour)
- **GPD** (gallons per day)
- **LPM** (liters per minute)
- **LPH** (liters per hour)
- **LPD** (liters per day)
- **Custom Units**
The default setting is **GPM**.

--- **NOTE** ---
Fieldbus transmitters have additional selections but do not have Custom Units.

If you select **Custom Units** you must enter the custom units you desire in up to six alphanumeric characters. The characters that may be used are listed in Table 10.

Table 10. Alphanumeric Characters

<table>
<thead>
<tr>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 through 9</td>
</tr>
<tr>
<td>A through Z</td>
</tr>
<tr>
<td>a through z</td>
</tr>
<tr>
<td>. (period)</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>/</td>
</tr>
<tr>
<td>(space)</td>
</tr>
</tbody>
</table>

You must also enter the conversion factor from gallons per minute to the custom units under **Custom Slope**. The slope for some frequently used units are given in Table 11. The slope may be from 1.0×10^{-30} to 1.0×10^{30}. Enter it in the form #.#####e+##.

Table 11. Custom Slope

<table>
<thead>
<tr>
<th>Unit</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft³/min</td>
<td>1.3368e-01</td>
</tr>
<tr>
<td>m³/min</td>
<td>3.7850e-03</td>
</tr>
<tr>
<td>m³/h</td>
<td>2.2710e-01</td>
</tr>
<tr>
<td>bbl/min*</td>
<td>2.3810e-02</td>
</tr>
<tr>
<td>ImpGal/min</td>
<td>8.3267e-01</td>
</tr>
<tr>
<td>MGD</td>
<td>1.4400e-03</td>
</tr>
</tbody>
</table>

* 42 gallon barrel

--- **NOTE** ---
To convert to units/hour, multiply the factor in the table by 60. To convert to units/day, multiply the factor in the table by 1440.

--- **Rate Format** ---
In Rate Format, from the eight choices in the menu, select the format of your rate from rounding to the nearest thousand to the nearest ten thousandth of a unit.

Select a display setting that provides the desired precision without yielding excessive “jitter” in the displayed value due to process noise. The displayed value can also be damped to reduce flickering of the least significant digits. The default setting is #####.##.
NOTE
Changing this parameter can affect other parameters such as Range URV and Alarm Setpt. For example, if Rate Format was configured as ####.## and the Hi Setpoint as 1234.56 but then the Rate Format was changed to ###.###. When you access Hi Setpoint again, you will find the display reading 999.999, meaning that the Hi Alm Setpt exceeded the maximum legal limit. The displayed value is the maximum allowable value, not the currently configured value.

Rate Damping
In Rate Damping, specify the damping response time for the local display only. It is used to minimize flickering of the less significant digits. Choices are from 00.0 to 99.9 seconds. 00.0 is no damping. The default value is 3.0 seconds.

Totalizer
The totalizer provides an indication of the volume of flow that has accumulated since the last time that the totalizer was reset. Separate indications of the quantity of forward flow and reverse flow are available as are computed values for the Net Total (Forward flow minus Reverse flow) and the Grand Total (Forward flow minus Reverse flow since last reset of Grand Total). The totalizer is nonvolatile; that is, the accumulated values are retained over power cycles. If you are going to use the Totalizer or Pulse Total features, configure the Totalizer to On; if not, configure it Off. The default setting is Off.

If you configure it On, specify the engineering units of the totals (Tots EGU), the format of Forward, Reverse, and Net Total (Tot/Net Format), and the format of Grand Total (Gr Tot Format). Tots EGU also defines the units for a pulse from the pulse total output, if used.

Tots EGU
Specify the engineering units as gallons (Gal), liters (Lit), or Custom Units. The default setting is Gal.

NOTE
Fieldbus transmitters have additional selections but do not have Custom Units.

If you selected Custom Units, specify the Custom Units and Custom Slope as you did in Rate EGU. The slope for some frequently used units are given in Table 11. The slope may be from 1.0e-10 to 1.0e+10. Enter it in the form #.####e+##.
NOTE
Changing the totalizer EGU rescales all totals to the new engineering units. Changing this parameter can change the total to zero if the total exceeds the limit of the new format. For example, if **Tot Net Format** is ######.## and the present total is 50000.00, changing **Tots EGU** from Gal to Lit will cause the rescaled total to exceed the maximum displayable value and it will be reset to zero.

Table 12. Custom Slope

<table>
<thead>
<tr>
<th>Unit</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft³</td>
<td>1.3368e-01</td>
</tr>
<tr>
<td>m³</td>
<td>3.7850e-03</td>
</tr>
<tr>
<td>barrel</td>
<td>2.3810e-02</td>
</tr>
<tr>
<td>Imp Gal</td>
<td>8.3267e-01</td>
</tr>
</tbody>
</table>

* 42 gallon barrel

Tot/Net Format

In **Tot/Net Format**, from the eight choices in the menu, select the format of your forward, reverse, and net total from #####.### to #######.e4. The default setting is #######.

NOTE

1. Changing this parameter can change the total to zero if the total exceeds the limit of the new format. For example, if **Tot/Net Format** was configured as #######.# and present total was 123456.7 but then the **Tot/Net Format** was changed to ######.##, the totalizer would reset to zero.

2. If you plan to use the output pulse in Totalizer mode, the size of each pulse will be the equivalent of 1 digit in the rightmost decimal position of the displayed total.

Gr Tot Format

In **Gr Tot Format**, from the eight choices in the menu, select the format of your grand total from #######.### to #######.e4. The default setting is #######.

NOTE

Changing this parameter can change the total to zero if the total exceeds the limit of the new format. For example, if **Gr Tot Format** was configured as #######.## and present total was 12345678.9 but then the **Gr Tot Format** was changed to #######.##, the totalizer would reset to zero.

Reset Totals

This Setup parameter offers the opportunity to reset the totalizers to zero. To reset the totalizers, answer yes to the question **Reset All Tots?**

Setup of Outputs

The structural diagram of the Outputs menu is located on Figure 16 through Figure 18 beginning on page 65.
Output Mode

With FoxCom transmitters, specify your output as Digital or Analog. Specify Analog if you want an analog 4 to 20 mA signal. In this mode, a 600 baud digital signal is superimposed over the 4 to 20 mA signal for communication with a PC-Based Configurator. Specify Digital if you want to have a 4800 baud digital signal for I/A Series system communication.

If you selected Digital on your FoxCom transmitter or with a fieldbus transmitter, specify Unidirectional (UniDir) or BiDirectional (BiDir) flow. If you want a pulse output, you must specify Unidirectional. The default setting is UniDir.

If you selected Analog on your FoxCom transmitter or with a HART transmitter, specify one of the following:

- **UniDir** (unidirectional), which specifies unidirectional flow with a single upper range value (Forward URV).

- **Uni Multi-Rang** (unidirectional multi-range), which specifies unidirectional flow with multiple URVs selected by the Contact Inputs.

- **BiDir Dual Rng** (bidirectional dual range), which specifies two-way flow with 4 to 20 mA indicating the rate and an optional Relay Output indicating flow direction. The upper range value for forward flow is parameter Forward URV. The upper range value for reverse flow is parameter Reverse URV. The relationship between the milliampere output and the flow rate in BiDirectional Dual Range mode is illustrated in Figure 9.

- **BiDir SplitRng** (bidirectional split range), which specifies two-way flow with 4 to 12 mA for reverse flow (Reverse URV to 0) and 12 to 20 mA for forward flow (0 to Forward URV). An optional Relay Output can be used to indicate flow direction. 4 mA indicates reverse flow at the Reverse URV rate, 12 mA is zero flow, and 20 mA indicates forward flow at the Forward URV rate. The relationship between the milliampere output and the flow rate in BiDirectional Split Range mode is illustrated in Figure 10.

Figure 9. BiDirectional Dual Range Milliampere Output

- **BiDir SplitRng** (bidirectional split range), which specifies two-way flow with 4 to 12 mA for reverse flow (Reverse URV to 0) and 12 to 20 mA for forward flow (0 to Forward URV). An optional Relay Output can be used to indicate flow direction. 4 mA indicates reverse flow at the Reverse URV rate, 12 mA is zero flow, and 20 mA indicates forward flow at the Forward URV rate. The relationship between the milliampere output and the flow rate in BiDirectional Split Range mode is illustrated in Figure 10.
The default setting is UniDir (unidirectional single range).

The output mode must agree with flowtube direction. For example, if you pick UniDir or Uni Multi-Rang for Output Mode, you must pick Positive or Reverse for Flowtube Direction.

If you pick Uni Multi-Rang for Output Mode, you must supply two Contact Inputs to the transmitter, and program both CI1 and CI2 for Multi-Range. You must also program values for Range 1, 2, and 3 URVs. The settings of the Contact Inputs indicate which of the three upper range values is active at any time. The active upper range value is used to scale the analog output. In this mode, at least one Contact Input must be in the active state at all times. Otherwise, the transmitter indicates an Invalid Multi-Range diagnostic condition and the outputs are set to the configured upscale or downscale failure condition. The active URV is determined by the states of the Contact Inputs as shown in Table 13.

<table>
<thead>
<tr>
<th>Contact Input 1</th>
<th>Contact Input 2</th>
<th>Active URV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Inactive</td>
<td>Range 1</td>
</tr>
<tr>
<td>Inactive</td>
<td>Active</td>
<td>Range 2</td>
</tr>
<tr>
<td>Active</td>
<td>Active</td>
<td>Range 3</td>
</tr>
<tr>
<td>Inactive</td>
<td>Inactive</td>
<td>INVALID</td>
</tr>
</tbody>
</table>

If you select BiDir Dual Rng or BiDir SplitRng for Output Mode, you should not enable the Pulse Output since the Pulse Output is unidirectional.

If you select BiDir Dual Rng for Output Mode, you can program a Relay Output for flow direction. This is the only way to indicate remotely whether the analog output represents forward (positive) or reverse flow in this mode.

— NOTE —

In all of the above modes, a contact output can be configured to indicate actual flow direction.
Range

The selections in this parameter relate to your choice of Output Mode:

- For Digital Output and Unidirectional mode, specify the Forward URV.
- For Digital Output and BiDirectional mode, specify the Forward URV and the Reverse URV.
- For Analog Output and Unidirectional mode, specify the Forward URV.
- For Analog Output and Unidirectional Multi-Range mode, specify the URV for each of three ranges.
- For Analog Output and BiDirectional Dual Range mode, specify the Forward URV and the Reverse URV.
- For Analog Output and BiDirectional Split Range mode, specify the Forward URV and the Reverse URV.

--- NOTE ---
1. In each case, the URV must be within the minimum and maximum URV limits of the flowtube (see appropriate flowtube Master Instruction in “Reference Documents” on page 12).
2. The largest number that can be entered is limited by the Rate Format selection. The units for the URVs are defined by the Rate Display/Rate EGU selection.

Pulse Out

The Pulse Out Mode parameter can be configured to provide a Pulse Total or a Pulse Rate output signal. The Pulse Total output generates a pulse each time that the configured quantity passes through the pipe. The Pulse Rate output generates a pulse train whose frequency is scaled to the Pulse URV. The available selection for this parameter are Off, Pulse Rate, and Pulse Total. The default setting is Off.

In this parameter, specify the Pulse Out as Off, Pulse Rate, or Pulse Total.

--- NOTE ---
1. The Pulse Output is only unidirectional. Therefore it should be configured Off if you have specified BiDirectional flow.
2. The normal pulse output value can be overridden by Presets, Signal Lock, Alarms, Diagnostics, and AutoZeroLock (Empty Pipe Detect), in both the Pulse Rate and Pulse Total modes.

Pulse Rate

To use the Pulse Rate output feature, set the Pulse Out Mode to Pulse Rate; then set Pulse Out URV to the flow rate value in EGUs that generates the full-scale pulse rate frequency. The default value is 100.

--- NOTE ---
The engineering units of the Pulse Out URV parameter are established by “Rate EGU” on page 43.
Next, configure the full-scale frequency for the Pulse Rate output via the **Rate Max Freq** parameter. The available selections are **1000 Hz, 2000 Hz, 5000 Hz**, and **10000 Hz**. The default setting is **2000 Hz**.

NOTE

Changing **Rate Max Freq** can affect the **Pulse Preset** in the Calibration Menu; for example, if the **Rate Max Freq** was configured as **5000 Hz** and the **Pulse Preset** was **4000 Hz**, but then the **Rate Max Freq** was changed to **1000 Hz**, when you access **Pulse Preset** again, you are warned that the preset value exceeds the maximum. The display shows a value of **1000.0 Hz**, the maximum allowable value.

The Pulse Rate output is damped in accordance with the **Rate Out Damp** parameter (see page 50) and the **Noise Reduction** parameter (see page 57) settings.

Pulse Total

To use the Pulse Total output feature, the **Totalizer** must have been configured **On**, the desired totalizer units specified in **Tots EGU**, and the quantity per pulse indicated via the **Tot/Net Format** configuration. See “Totalizer” on page 45.

Then, set the **Pulse Out Mode** to **Pulse Total** and configure the **Tot Max Freq** parameter to indicate the maximum frequency at which the Pulse Total output can generate pulses. The choices are **10 Hz** or **100 Hz**. This setting also determines the on-time for the Pulse Total output, which is 50 milliseconds for the 10 Hz and 5 ms for the 100 Hz setting. The default setting is **100 Hz**.

NOTE

The Pulse Total output never generates pulses faster than the Tot Max Freq rate. However, the transmitter can keep track of a limited number of “pending” pulses. This occurs when the flow rate temporarily increments the totalizer faster than the Tot Max Freq rate. In this situation, the transmitter displays the message **Pulses Lag Total**. The accumulated pulses are sent to the pulse output when the flow rate returns to a lower value.

Rate Out Damp

This parameter specifies the damping time that is applied to the analog output and the pulse rate outputs. It is the time required to go from zero to 90% of a change. It can be set from 0.0 to 99.9 seconds. The default value is 3.0 seconds.

NOTE

If the Noise Reduction parameter is enabled, it also affects the digital output indirectly since the rate output damping determines the timing of the noise reduction algorithm.

Relay Outputs

The transmitter provides two Relay Outputs (RO1 and RO2) that can be configured to indicate certain status conditions. To use this feature, configure the Function, Operation, and Suppress parameters for each relay.
RO1 Function and RO2 Function — This parameter enables you to turn this feature off or to specify one of several status conditions to be indicated. The selections are:

- **Off** (the relay output is not in use)
- **Alarm** (the relay becomes active when any configured alarm occurs)
- **Alarm + Diag** (the relay becomes active when a diagnostic condition or the configured alarm occurs)
- **Diagnostics** (the relay becomes active when a diagnostic condition occurs)
- **Flow Direction** (the relay becomes active when the flow rate is negative)
- **Test Mode** (the relay becomes active when the transmitter is in Test mode)

The default setting for these parameters is **Off**.

If you select **Alarm** or **Alarm + Diag**, you must specify in **RO n Alarm** a particular alarm condition that activates the Relay Output or indicate that any alarm should activate the Relay Output. The following selections are available:

- **High Rate**
- **Low Rate**
- **High Fwd Total 1**
- **High Fwd Total 2**
- **AutoZeroLock (Empty Pipe)**
- **Any Alarm**

The default for **RO 1 Alarm** is **High Rate** and for **RO 2 Alarm** is **Low Rate**.

NOTE

The alarm that you specify must also be enabled in “Setup of Alarms” on page 52.

If you select **AutoZeroLock (Empty Pipe)**, ensure that the AutoZeroLock (Empty Pipe) detector is enabled and calibrated. Also ensure that the **AZL Alarms (EPD Alarms)** parameter is set to **On**.

RO1 Operation and RO2 Operation — To use the Relay Output function, you must specify the inactive state of the Relay Output. This is the “normal” condition of the relay (the state when the configured condition does not exist). Specify either **Normally Open** or **Normally Closed**. The default setting for both parameters is **Normally Open**.

RO1 Suppress and RO2 Suppress — If you select **Alarm** or **Alarm + Diag**, you can specify the Suppress function as **Yes** or **No**. If Suppress is **Yes**, an Alarm Acknowledge that is performed when the alarm condition still exists resets the Relay Output to the inactive state. Reassertion to the active state is suppressed unless the alarm condition clears and reappears. The acknowledgment does not clear an existing alarm condition. It only causes the relay to return to the inactive state.

For example, you may have a Relay Output that is configured for High Rate Alarms and is connected to an alarm horn. When a High Rate Alarm occurs, the horn can be silenced via an Alarm Acknowledge if the Suppress feature is On. The horn does not sound again unless the flow rate falls below the alarm level and subsequently rises above that level. Alarms can be acknowledged via the keypad/display, a HART Communicator, or a contact input. The Suppress...
feature is separately configurable for each Relay Output. Specify either Yes or No for the RO1 Suppress and RO2 Suppress parameters. The default setting for both parameters is No.

HART Output

Poll Address

This parameter specifies the polling address of the unit, which is used in identifying the unit to another HART device. The address can be set to any value from 00 to 15. However, this parameter should always be set to 00 unless the unit is being operated in a multi-drop environment (more than one HART device present on the same current loop).

If the parameter is set to any nonzero value (specifying multi-drop operation), the analog (milliampere) output of the device is constantly locked at 4.0 mA. Thus, the analog output no longer reflects process conditions or responds to Diagnostics, Alarms, or Presets. The default value is 00.

Number of Request Preambles

This parameter indicates the number of preamble characters that the transmitter sends at the start of each HART response message. Depending on the characteristics of the communication link, changing this parameter could disrupt communications. For this reason, this parameter is not configurable with the HART Communicator.

Setup of Alarms

The structural diagram of the Alarms menu is located on Figure 19 on page 68.

The alarm feature allows you to specify process conditions of interest (such as high flow rate) and actions that the transmitter should take when the condition occurs (such as closing a relay output). To configure this feature, first specify Alarms as On or Off. The default setting is Off.

NOTE

Shutting alarms Off does not acknowledge existing alarms.

If On, proceed to configure the following alarm parameters:

High Rate and Low Rate

Set each of these alarms as On or Off. If On, specify the set point and the amount of deadband between 0 and 999999 in the Rate EGU units previously configured. The default values are:

- Hi Setpoint: 100
- Hi Deadband: 1.0
- Lo Setpoint: 1.0
- Lo Deadband: 0.5

NOTE

Alarm rates are absolute values so use care in applying them to bidirectional flow.
High Fwd Tot 1 and High Fwd Tot 2

The forward total alarms trigger an alarm when the forward total value exceeds the configured setpoint. Two forward total alarms are available. Each can be configured separately.

Configure **Tot 1 Alm** and **Tot 2 Alm** as **On** or **Off**. The default setting is **Off**. If **On**, specify **Tot 1 Setpoint** and **Tot 2 Setpoint** between 0 and 9999999 in the **Tots EGU** units previously configured. The default value for **Tot 1 Setpoint** is 100,000. that for **Tot 2 Setpoint** is 1,000,000.

AutoZeroLock (Empty Pipe)

AutoZeroLock (Empty Pipe) triggers an alarm when the AutoZeroLock (Empty Pipe) circuitry detects high electrode impedance. To use this alarm, the AZL Detect (Empty Pipe Det) parameter must be enabled and calibrated. See “AutoZeroLock (Empty Pipe)” on page 53.

Configure **AZL Alarm (EDP Alarm)** as **On** or **Off**. The default setting is **Off**.

WARNING

Do not take any action that can cause danger to personnel or damage to equipment based on the assumption that a pipe is empty or full because of an AutoZeroLock (Empty Pipe) indication.

Rate Response

The alarm feature can be configured to drive the analog and pulse rate outputs fully downscale or upscale or to have no effect on these outputs. Analog output limits are 3.6 mA and 22.0 mA (12.0 mA and 22.0 mA in Split Range). Pulse rate limits are 0 Hz and 110% of the configured maximum pulse rate.

Configure **Rate Response** as **GoDownscale**, **Go Upscale**, or **No Effect**. The default setting is **GoDownscale**.

NOTE

There is a hierarchy of precedence in driving the output up or down scale. The Signal Lock takes precedence over Diagnostics which takes precedence over Alarms. Therefore, if an alarm condition has caused the output to be driven upscale, a diagnostic condition could override the first action and drive the output downscale.

Display Response

The display can be configured to blink or not blink when an alarm condition occurs. Regardless of this setting, an active alarm causes an icon to be illuminated on the transmitter display panel.

Configure **Display Response** as **Blink** or **Don’t Blink**. The default setting is **Don’t Blink**.
Alarm Clear

The alarm feature can be configured to clear an alarm automatically when the alarm condition no longer exists, or to require a manual clear. Once an alarm condition is no longer present, and has been cleared (either automatically or manually), all outputs return to their normal conditions.

--- NOTE ---
A contact input can also be configured to clear alarms.

Configure **Alarm Clear** as **Manual** or **Auto**. The default setting is **Auto**.

Setup of Diagnostics

The structural diagram of the Diagnostics menu is located on Figure on page 70.

Rate Response

The diagnostics **Rate Response** parameter determines if the analog and pulse rate outputs are driven fully downscale or upscale if a diagnostic condition is detected. Analog output limits are 3.8 mA and 22.0 mA (12.0 mA and 22.0 mA in Split Range). Pulse rate limits are 0 Hz and 110% of the configured maximum pulse rate.

Configure **Rate Response** as **GoDownscale** or **Go Upscale**. The default setting is **GoDownscale**.

--- NOTE ---
There is a hierarchy of precedence in driving the output up or down scale. The Signal Lock takes precedence over Diagnostics which takes precedence over Alarms. Therefore, if an alarm condition has caused the output to be driven upscale, a diagnostic condition could override the first action and drive the output downscale.

Display Response

The display can be configured to blink or not blink when a diagnostic condition occurs. Regardless of this setting, an active alarm causes an icon to be illuminated on the transmitter display panel.

Configure **Display Respon** as **Blink** or **Don’t Blink**. The default setting is **Don’t Blink**.

Setup of Identity

The structural diagram of the Identity menu is located on Figure 21 on page 70.

Identify the following with the maximum number of alphanumeric characters listed. Use the characters listed in Table 10.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowable Characters</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag Number</td>
<td>12 characters</td>
<td>FoxCom and Fieldbus only</td>
</tr>
<tr>
<td>Location</td>
<td>14 characters</td>
<td>FoxCom and Fieldbus only</td>
</tr>
<tr>
<td>Tag Name*</td>
<td>14 characters</td>
<td>Only in Digital Output mode</td>
</tr>
<tr>
<td>Device Name*</td>
<td>6 characters</td>
<td>Only in Digital Output mode</td>
</tr>
<tr>
<td>HART Tag</td>
<td>8 characters</td>
<td>HART only</td>
</tr>
</tbody>
</table>
Setup of Passcodes

The structural diagram of the Passcodes menu is located on Figure 22 on page 71.

Passcodes can be configured to prohibit unauthorized personnel from performing certain functions on the transmitter. Passcodes can be configured **On** or **Off**. If you specify **Off**, there is no passcode protection. The default setting is **Off**.

If you specify **On**, you can configure each of two passcodes to protect one of the following functions or combination of functions:

- Setup (setup functions protected)
- Totals Reset (ability to reset totals protected)
- Setup and Totals (both setup and reset functions protected)
- Test Mode (TM) (Test mode functions protected)
- Test Mode and Setup (Test mode and setup functions protected)
- Test Mode and Reset (Test mode and reset functions protected)
- TM, Setup, and Reset (Test mode, setup, and reset functions protected)

An example of how this can be used is that one passcode could be given to some operators to enable them to reset totals but not change the configuration of the transmitter or perform test mode functions. Other operators could be given another passcode to enable them to reset totals, change the configuration, and perform test mode functions.

The sequence of this setup procedure is to specify the function of Passcode 1 and then its passcode. The passcode can be any four digit number between 0000 and 9998. When you have entered it, the display asks you, **Are You Sure?** Use the Right arrow key to accept the new passcode and the Left arrow key to cancel it. After you have completed the procedure for configuring Passcode 1, repeat it for Passcode 2. The default setting for specifying the functions protected of both passcodes is **Setup**.

Setup of Transmitter

The structural diagram of the Transmitter menu is located on Figure 23 and Figure 24 beginning on page 72.

Xmtr Mode

This parameter enables you to specify if you want the transmitter to be **On-line** or **Off-line**. This parameter could read **Calibrate** or **Override** if someone has changed the mode with a HART Communicator, PC-Based Configurator, I/A Series Workstation, or FOUNDATION Fieldbus Host. However, there is no need to set this parameter to anything other than **On-line** or **Off-line**. The default setting is **On-line**.
Line Frequency

The Line Frequency parameter specifies the local ac power frequency. Configure this parameter with the local ac power frequency to ensure optimum performance even if you are using a dc powered transmitter. The available selections are 50 Hz and 60 Hz. The default setting is 60 Hz.

Flow Direction

The performance of the flowtube is identical in either direction. The flowtube can be installed in the reverse direction if it provides better access for the flowtube wiring. This parameter ensures that the Flow Direction configured in the transmitter matches the installation. It indicates the direction of positive flow whether flow is UniDirectional or BiDirectional. Specify the flow direction as shown in Table 14.

You must make a BiDir selection if, and only if, you selected a BiDir flow mode in the Output section of Setup.

Make one of the Positive selections if the forward flow direction agrees with the flow direction arrow on the tube. Make one of the Reverse selections if the forward flow direction is opposite from the flow arrow.

The default setting is Positive.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Forward flow is in direction of arrow on flowtube and unidirection flow mode was selected in the output section of setup.</td>
</tr>
<tr>
<td>Reverse</td>
<td>Forward flow is opposite the direction of arrow on flowtube and unidirection flow mode was selected in the output section of setup.</td>
</tr>
<tr>
<td>BiDir Positive</td>
<td>Forward flow is in direction of arrow on flowtube and bidirectional flow mode was selected in the output section of setup.</td>
</tr>
<tr>
<td>BiDir Reverse</td>
<td>Forward flow is opposite the direction of arrow on flowtube and bidirectional flow mode was selected in the output section of setup.</td>
</tr>
</tbody>
</table>

--- Note ---

In some installations, the flowtube is installed with the arrow pointing upstream (opposite the positive flow direction), and the flowtube coil-drive wiring to the transmitter is reversed. This installation is acceptable. But you must select Positive or BiDir Positive for Flow Direction. Refer to MI 021-387 for details on flowtube wiring.

Contact Inputs

The Contact Input parameters specify the function and operation of the two contact inputs. Each input is configured separately. CI1 Function and CI2 Function specify the function performed by the contact inputs when the contact enters the active state. CI1 Operation and CI2 Operation specify the inactive state (normally open or normally closed) of the contact inputs.

To configure CI1 Function and CI2 Function, specify one of the choices shown in Table 15.
If you have specified Unidirectional Multi-Range output, you must select Multi-Range for both CI1 and CI2. The external connections to these contacts must be so arranged that at least one of them is always in the active state; it is considered an error condition for both inputs to be in the off state. If you have not specified Unidirectional Multi-Range output, you should not select Multi-Range as the function of either of the contact inputs.

Table 15. Contact Input Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Contact Input function not enabled.</td>
</tr>
<tr>
<td>Ack Alarm</td>
<td>Acknowledges an alarm, eliminates the need to do this manually.</td>
</tr>
<tr>
<td>Reset Net Tot</td>
<td>Resets the Forward, Reverse, and Net Totals.</td>
</tr>
<tr>
<td>Reset Grand Tot</td>
<td>Resets the Grand Total.</td>
</tr>
<tr>
<td>Reset All Tot</td>
<td>Resets all totals.</td>
</tr>
<tr>
<td>Multi-Range</td>
<td>Switches the range in a Multi-Range configuration.</td>
</tr>
<tr>
<td>Signal Lock</td>
<td>Drives the outputs to the zero flow condition.</td>
</tr>
</tbody>
</table>

The default setting of CI1 Function and CI2 Function is Off.

To configure the CI1 Operation and CI2 Operation, specify Normally Open or Normally Closed. The default setting is Normally Open, indicating that each contact is inactive when open and active when closed.

Noise Reduction

The noise reduction feature slows the initial output response to a change. See Figure 11. Noise reduction was designed to quiet the output flow signals with minimum impact on the transmitter ability to respond to rapid flow rate changes. Specify the Noise Reduction parameter as On or Off, and use the Rate Out Damp parameter to control the amount of noise reduction action.

If the Noise Reduction parameter is enabled (On), it also affects the digital output indirectly since the Rate Out Damp time determines the timing of the noise reduction algorithm. Thus, Noise Reduction applies to the analog, pulse rate, display, and digital outputs.

The default setting for the Noise Reduction parameter is On. This is recommended for most applications. If you want to increase the transmitter speed of response, leave the Noise Reduction parameter On and reduce the Rate Out Damp value.

Figure 11. Noise Reduction
AutoZeroLock (Empty Pipe) Detection

The AutoZeroLock (Empty Pipe) Detector function can be configured to trigger when an increase in electrode impedance is detected, such as can occur when a pipe is empty. It can further be configured to force all outputs to the zero flow condition, generate an alarm condition, or both if triggered.

The intent of AutoZeroLock (Empty Pipe) Detection is to prevent false flow readings that can occur with empty pipe conditions. Without this feature, the input to the transmitter could become an open circuit and the output could drift. With this feature, the empty pipe detection circuit prevents output drift by monitoring the conductivity between electrodes and forcing the output to zero if the conductivity falls below a predetermined level. The feature does not reveal a partially full condition if the electrodes remain covered with fluid and does not indicate how empty a pipe is if the electrodes are exposed. Also, fouling of the electrodes could cause a false empty pipe condition and coating of the electrodes with a viscous fluid could cause a significant lag before an empty pipe condition is recognized.

WARNING

Do not take any action that can cause danger to personnel or damage to equipment based on the assumption that a pipe is empty or full because of an Empty Pipe Detection indication.

Configure the AZL Setup (EPD Setup) parameter as On or Off. The default setting is Off. Next, configure the AZL Out Effect (EPD Rate Effect) parameter as No Effect or Auto Sig Lock. The No Effect choice means that the AutoZeroLock (Empty Pipe) detect feature does not affect any of the outputs, but can still activate an alarm and contact output. The Auto Sig Lock choice means that AutoZeroLock (Empty Pipe) Detect forces all outputs to the zero condition when triggered. The default setting is No Effect.

WARNING

Due to the possibility of false empty readings, do not use Empty Pipe Detection configured to Auto Sig Lock in critical flow loops.

Lastly, follow the calibration procedure (Calculate Setpt as shown in the Structure Diagram on page 73).

NOTE

AutoZeroLocl (Empty Pipe detect can also be calibrated via a HART Communicator, PC-Based Configurator, I/A Series Workstation, or FOUNDATION Fieldbus Host.

Setup of Calibration

The structure diagram of the Calibration menu is located on Figure 25 on page 74.

Meter Factor

The Meter Factor is a property of the flowtube that must be entered into the transmitter configuration database.
Before entering the Meter Factor, you have the opportunity to confirm or change the **MFactor Format**. The default is `###.#######`. It only needs to be changed if the meter factor can not be entered into the format displayed.

The default value of the **Meter Factor** is **12.00**. To determine the proper value, find the “Cal Factor” or “IMT25 Cal Fact” that is stamped on the flowtube data label. If the data label shows the “IMT25 Cal Fact,” use that as your Meter Factor. If the data label does not have that exact label, refer to “Determining the Meter Factor” on page 18 to determine the meter factor.

Analog Out Cal

--- **NOTE**

1. This parameter only appears if the transmitter is in Analog Output mode.
2. The factory calibration of your transmitter is accurate. Therefore, it is not necessary to use the Analog Out Cal procedure unless there is a plant requirement to make the lower and upper calibration values exactly match readings on certain plant calibration equipment and there is a small but unacceptable difference between the transmitter mA output and the test equipment mA readout values.
3. Once this procedure is used, the factory calibration is lost, but an accurate milliammeter can be used to restore an accurate calibration.

The **Analog Out Cal** parameter allows you to tune the 4 mA and 20 mA output values. The procedure is as follows:

1. Connect a precision milliammeter in the output loop.
2. With **4 mA Adjust** on the first line of the display, use the Up and Down keys to select an adjustment step size of **0.5**, **0.05**, or **0.005** mA. Then, use the Left or Right arrow keys to execute the adjustment in the lower or higher direction respectively.
3. Repeat Step 2 until your milliammeter reads **4 mA**. Then using the Up and Down arrow keys, go to **Done** and press either the Left or Right arrow key.
4. Repeat Steps 2 and 3 for 20 mA.

Preset Outputs

The **Preset Outputs** parameter allows you to override the normal outputs with particular output values. These values can then be used to verify that the output loops are connected and calibrated correctly. You can preset these values and configure them **Off** until you are ready to use them. Once you exit the Preset Output menu, the transmitter returns to normal operation.

If your transmitter is in Analog mode: In **Analog Preset**, you can configure the analog output between 3.8 and 21.0 mA.

If your transmitter is in Digital mode: In **Rate Preset**, you can configure the digital output in Rate Units configured in “Rate EGU” on page 43. The value can be between 0 and the maximum value that fits into the Rate Format configured in “Rate Format” on page 44.

If your transmitter is configured in Pulse Rate mode: In **Pulse Preset**, you configured the pulse rate to a value between 0 and the Rate Max Freq selected in the configuration of “Pulse Rate” on page 49.
If your transmitter is configured in Pulse Total mode: In **Pulse Preset**, you can configure the pulse count to a value between 0 and 65535.

You can preset this value and configure it **off** until you are ready to use it. You may change the configuration to **on** at the appropriate time.

--- **NOTE**

Presets have a lower priority than Signal Lock, Diagnostics, and Alarms. If the transmitter is in Signal Lock or an alarm or diagnostic is active and the output action for the active condition is anything other than No Effect, the preset will not actually control the output until the overriding condition goes away.
Appendix A. Setup Diagrams

This appendix contains structure diagrams that illustrate the Setup menu structure of the IMT25 Transmitter and show how you can use the keypad/display to get from one point to another in the structure. These diagrams and the configuration worksheets included in Appendix B can be invaluable tools in configuring and troubleshooting your transmitter.

Top Level (Level 1) Menu Structure

*Quickstart is not present with FOUNDATION fieldbus transmitters
Level 2 Setup Menu Structure

GOING FROM ON-LINE TO OFF-LINE MODE BECAUSE OF SETUP CHANGES ALWAYS DISPLAYS THE WARNING MESSAGE:

GO OFF-LINE?
NO YES

Figure 13. Structure Diagram – Setup Menu
Level 3 System Menu Structure

3 SYSTEM DEFAULT SCREEN
 DESC
 DEFAULT SCREEN?
 NET TOTAL

3 SYSTEM DUAL DISPLAY
 OFF
 ON

3 SYSTEM RATE DISPLAY

4 RATE DISPLAY RATE DISPLAY

4 RATE DISPLAY RATE EGU
 RATE EGU?
 GPM
 GPH
 GPD
 LPM
 LPH
 LPD
 Custom

4 RATE DISPLAY RATE FORMAT
 RATE FORMAT?
 #.#
 #.#
 #.#
 #.#
 #.#
 #.#
 #.#

4 RATE DISPLAY RATE DAMPING
 RATE DAMPING?
 #.#
 SEC

*Fieldbus transmitters have additional unit selections but do not have Custom Units.

Figure 14. Structure Diagram – System Menu
Figure 15. Structure Diagram – System Menu

*Fieldbus transmitters have additional unit selections but do not have Custom Units.

**Fieldbus transmitters have 4 Reset choices: Not Executed, Reset Net Rev/Fwd, Reset Grand Total, and Reset All Totals*
Level 3 OUTPUTS Menu Structure

With FoxCom Transmitters

OUTPUT MODE
- **ANALOG**
- Digital
- Analog

DIGITAL MODE?
- UNIDIR
- UniDir
- BiDir

ANALOG MODE?
- {BIDIR DUAL RNG }
- UniDir
- Uni Multi-Rang
- BiDir Dual Rng
- BiDir SplitRng

POLL ADDRESS
- {00}

REQ PREAMBLES
- {05}

With HART Transmitters

OUTPUT MODE
- **DIGITAL**
- Digital

DIGITAL MODE?
- UNIDIR
- UniDir
- BiDir

With Fieldbus Transmitters

OUTPUT MODE
- **ANALOG MODE**
- ANALOG MODE?
- {BIDIR DUAL RNG }

POLL ADDRESS
- {00}

REQ PREAMBLES
- {05}

If (Output Mode = Analog) AND (Analog Mode = Uni Multi-Rng):

RANGE INFO
- **RANGE 1 URV?**
- {#####.#}
- GPM

RANGE 2 URV?
- {#####.#}
- GPM

RANGE 3 URV?
- {#####.#}
- GPM

If (Output Mode = Digital) AND (Digital Mode = UniDir)) OR ((Output Mode = Analog) AND (Analog Mode = UniDir):

FORWARD URV?
- {#####.#}
- GPM

If (Digital/BiDir) OR (Analog/BiDir Dual Rng) OR (Analog/BiDir Split Rng):

FORWARD URV?
- {#####.#}
- GPM

REVERSE URV?
- {#####.#}
- GPM

With Fieldbus Transmitters

OUTPUT MODE
- **HART OUTPUT**

POLL ADDRESS
- {00}

REQ PREAMBLES
- {05}

If (Output Mode = Digital) AND (Digital Mode = UniDir)) OR ((Output Mode = Analog) AND (Analog Mode = UniDir):

RANGE INFO
- **RANGE 3 URV**
- {#####.#}
- GPM

If (Digital/BiDir) OR (Analog/BiDir Dual Rng) OR (Analog/BiDir Split Rng):

FORWARD URV?
- {#####.#}
- GPM

REVERSE URV?
- {#####.#}
- GPM

3 OUTPUTS
- Pulse Out Mode
- (see next page)

Figure 16. Structure Diagram – Outputs Menu
Level 3 OUTPUTS Menu Structure

3 OUTPUTS
Range Info
(see previous page)

3 OUTPUTS
PULSE OUT MODE

PULSE OUT MODE?
PULSE RATE

Off
Pulse Rate
Pulse Total

PULSE OUT URV?
#####.# GPM

RATE MAX FREQ?
5000 Hz
1000 Hz
2000 Hz
5000 Hz
10000 Hz

TOT MAX FREQ?
100 Hz
10 Hz
100 Hz

TOTALIZER (FIGURE 15 ON PAGE 64) MUST BE ON FOR PULSE TOTAL TO WORK.

3 OUTPUTS
PULSE OUT MODE

3 OUTPUTS
RATE OUT DAMP

RATE OUT DAMP?
###.## SEC

PULSE-ON TIME IS 50 MS FOR 10 HZ AND 5 MS FOR 100 HZ.

RATE OUTPUT DAMPING APPLIES TO THE ANALOG OUTPUT AND PULSE RATE OUTPUTS.

3 OUTPUTS
Relay Out 1
(see next page)

Figure 17. Structure Diagram – Outputs Menu
Figure 18. Structure Diagram – Outputs Menu
Level 3 ALARMS Menu Structure

Figure 19. Structure Diagram – Alarms Menu
Level 3 DIAGNOSTICS Menu Structure

3 DIAGNOSTICS
RATE RESPONSE

RATE RESPONSE?
GO UPSCALE

Go Downscale
Go Upscale

3 DIAGNOSTICS
DISPLAY RESPON

DISPLAY RESPON?
DON'T BLINK

Don't Blink
Blink

Figure 20. Structure Diagram – Diagnostics Menu
Level 3 IDENTITY Menu Structure

With FoxCom and Fieldbus Transmitters

- 3 IDENTITY TAG NUMBER
 - TAG NUMBER?
 - ABCDEF123456
 12 alphanumeric characters

- 3 IDENTITY LOCATION
 - LOCATION?
 - ABCDEFG1234567
 14 alphanumeric characters

If Output Mode = Digital

- 3 IDENTITY TAG NAME
 - TAG NAME?
 - ABCDEF1234567
 14 alphanumeric characters

- 3 IDENTITY DEVICE NAME
 - DEVICE NAME?
 - ABC123
 6 alphanumeric characters

With HART Transmitters

- 3 IDENTITY HART TAG
 - HART TAG?
 - {HART 07}
 12 alphanumeric characters

- 3 IDENTITY HART DESCRIPTOR
 - HART DESCRIPTOR?
 - {ABCDEFG1234567}
 14 alphanumeric characters

- 3 IDENTITY HART MESSAGE
 - HART MESSAGE?
 - {ABCDEF1234567}
 32 alphanumeric characters

With All Transmitters

- 3 IDENTITY TUBE MS CODE
 - TUBE MS CODE?
 - ABCDEFG1234567
 32 alphanumeric characters

- 3 IDENTITY TUBE SERIAL NUM
 - TUBE SERIAL NUM?
 - ABCDEFG1234567
 16 alphanumeric characters

Figure 21. Structure Diagram – Identity Menu
Level 3 PASSCODES Menu Structure

Figure 22. Structure Diagram – Passcodes Menu
Level 3 TRANSMITTER Menu Structure

Figure 23. Structure Diagram – Transmitter Menu
Level 3 TRANSMITTER Menu Structure

3 TRANSMITTER
Contact In 2
(see previous page)

3 TRANSMITTER
NOISE RED ON

3 TRANSMITTER
AZL DETECT

4 AZL DETECT
AZL SETUP

4 AZL DETECT
CALCULATE SETPT

NOTE: THE “EPD CALCULATE SETPOINT” ROUTINE MUST BE USED TO COMPLETE ACTIVATION OF THE EMPTY PIPE DETECTION FEATURE.

NOTE: On FoxCom Transmitters, AZL DETECT is shown as EDP PIPE DET
AZL SETUP as EPD SETUP
AZL OUT EFFECT as EDP RATE EFFECT

Figure 24. Structure Diagram – Transmitter Menu
Level 3 CALIBRATION Menu Structure

If XMTR is ANALOG output mode:

3 CALIBRATION METER FACTOR → MFACTOR FORMAT

If XMTR is DIGITAL output mode:

3 CALIBRATION PRESET OUTPUTS → 4 PRESET OUTPUTS

If Pulse Out Mode is Pulse Rate:

4 PRESET OUTPUTS → PULSE PRESET?

If Pulse Out Mode is Pulse Total:

4 PRESET OUTPUTS → PULSE PRESET?
Appendix B. Configuration Worksheets

This appendix contains information that will help you configure your IMT25 Transmitter. This page defines the content of the worksheets. Subsequent pages contain the actual configuration worksheets.

<table>
<thead>
<tr>
<th>Structure Diagram</th>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Default Factory Configuration</th>
<th>User Configuration</th>
<th>Remarks and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Shaded areas in configuration worksheets indicate options that are available only if the preceding option has been selected.
<table>
<thead>
<tr>
<th>Structure Diagram</th>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SYSTEM</td>
<td>DEFAULT SCREEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Screen</td>
<td>Rate EGU, Rate %Range, Forward Total, Reverse Total, Net Total, Grand Total, Dual Display</td>
<td>Rate EGU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dual Display?</td>
<td>On, Off</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If On:</td>
<td></td>
<td>Rate EGU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disp Line 1?</td>
<td>Rate EGU, Rate %Range, Forward Total, Reverse Total, Net Total, Grand Total</td>
<td>Rate EGU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disp Line 2?</td>
<td>Rate EGU, Rate %Range, Forward Total, Reverse Total, Net Total, Grand Total</td>
<td>Rate EGU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate Display</td>
<td>GPM, GPH, GPD, LPM, LPH, LPD, Custom Others (fieldbus)</td>
<td>GPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Custom:</td>
<td></td>
<td>Custom Units Enter up to 6 alphanumerics</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Custom Slope Enter up to 9 digits</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rate Format</td>
<td>###000. ###00. ######0. ######0. ######0. ######. #</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rate Damping</td>
<td>0.0 to 99.9 seconds</td>
<td>3.0</td>
</tr>
<tr>
<td>A-4</td>
<td>TOTALIZER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If On:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tots EGU:</td>
<td>Gal, Lit, Custom</td>
<td>Gal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Custom:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tots Cust Units</td>
<td>Enter up to 6 alphanumerics:</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tots Cust Slope</td>
<td>Enter up to 9 digits from 1.0e-10 to 1.0e+10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot/net Format</td>
<td>Select 1 of 8 formats</td>
<td>#######.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gr Tot Format</td>
<td>Select 1 of 8 formats</td>
<td>#######.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure Diagram</td>
<td>Prompt/Parameter</td>
<td>Options or Parameter Limits</td>
<td>Factory Default Configuration</td>
<td>User Entry or Selection</td>
<td>Remarks/Notes</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>A-5</td>
<td>3 OUTPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Mode?</td>
<td>Digital, Analog</td>
<td>Per Model Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Digital:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Mode?</td>
<td>UniDir, BiDir</td>
<td>UniDir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Analog:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Mode?</td>
<td>UniDir, Uni Multi-Rng, BiDir Dual Rng, BiDir Split Rng</td>
<td>UniDir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Analog and Uni Multi Rng:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range Info:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Rang URV1</td>
<td>Flowtube Min URV to 999999</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Rang URV2</td>
<td>Flowtube Min URV to 999999</td>
<td>200 Must match value below marked **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Rang URV3</td>
<td>Flowtube Min URV to 999999</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If digital and UniDir or Analog and UniDir:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range Info:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward URV</td>
<td>Flowtube Min URV to 999999</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Digital and BiDir or Analog and BiDir Dual Rng or Analog and BiDir Split Rng</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range Info:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward URV</td>
<td>Flowtube Min URV to 999999</td>
<td>100</td>
<td>** Must match value of Multi-Range URV2 above</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse URV</td>
<td>Flowtube Min URV to 999999</td>
<td>200 Must match value below marked **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HART Output</td>
<td>(HART only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poll Address</td>
<td>0 through 15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Req Preambles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>3 OUTPUTS (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse Out Mode</td>
<td>Off, Pulse Rate, Pulse Total</td>
<td>Off</td>
<td>Pulse output (rate or total) is always unidirectional.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Pulse Rate:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse Out URV</td>
<td>Flowtube Min URV to 999999</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate Max Freq</td>
<td>1000, 2000, 5000, or 10000 Hz</td>
<td>2000 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Pulse Total</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot Max Freq</td>
<td>10 Hz, 100 Hz</td>
<td>100 Hz</td>
<td>Rate output damping applies to analog and pulse rate outputs. It also controls the noise reduction action.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate Out Damp</td>
<td>0 to 99.9 seconds</td>
<td>3.0 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure Diagram</td>
<td>Prompt/Parameter</td>
<td>Options or Parameter Limits</td>
<td>Factory Default Configuration</td>
<td>User Entry or Selection</td>
<td>Remarks/Notes</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>A-7</td>
<td>Relay Out 1</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO1 Function:</td>
<td>Off, Alarm, Alarm & Diag, Diagnostics, Flow Direction, Test Mode</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Alarm or Alarm & Diag</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO1 Alarm?</td>
<td>High Rate, Low Rate, High Fwd Tot 1, High Fwd Tot 2, Empty Pipe, Any Alarm</td>
<td>High Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO1 Operation:</td>
<td>Normally Closed, Normally Open</td>
<td>Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO1 Suppress:</td>
<td>No, Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relay Out 2</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO2 Function:</td>
<td>Off, Alarm, Alarm & Diag, Diagnostics, Flow Direction, Test Mode</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Alarm or Alarm & Diag</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO2 Alarm?</td>
<td>High Rate, Low Rate, High Fwd Tot 1, High Fwd Tot 2, Empty Pipe, Any Alarm</td>
<td>Low Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO2 Operation:</td>
<td>Normally Closed, Normally Open</td>
<td>Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RO2 Suppress:</td>
<td>No, Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure Diagram</td>
<td>Prompt/Parameter</td>
<td>Options or Parameter Limits</td>
<td>Factory Default Configuration</td>
<td>User Entry or Selection</td>
<td>Remarks/Notes</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>A-8</td>
<td>3 ALARMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alarms On?</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If On:</td>
<td></td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Rate:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hi Alarm On?</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If On:</td>
<td></td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hi Alm Setpt</td>
<td>0 to 999999</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hi Alm Dband</td>
<td>0 to 999999</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Rate:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Alarm On?</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If On:</td>
<td></td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Alm Setpt</td>
<td>0 to 999999</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low Alm Dband</td>
<td>0 to 999999</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Fwd Tot 1:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot 1 Alarm On:</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot 1 Alm Setpt</td>
<td>0 to 999999</td>
<td>100000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Fwd Tot 2:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot 2 Alarm On:</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tot 2 Alm Setpt</td>
<td>0 to 9999999</td>
<td>1000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AutoZeroLock</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AZL Alarm?</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate Response?</td>
<td>No Effect</td>
<td>Go Downscale</td>
<td>Go Downscale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display Response?</td>
<td>Don't Blink, Blink</td>
<td>Don't Blink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alarm Clear?</td>
<td>Manual</td>
<td>Auto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-9</td>
<td>3 DIAGNOSTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rate Response?</td>
<td>Go Downscale</td>
<td>Go Downscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display Response?</td>
<td>Don't Blink, Blink</td>
<td>Blink</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A-10 3 IDENTITY

With FoxCom and Fieldbus Transmitters

<table>
<thead>
<tr>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag Number</td>
<td>Enter up to 12 alphanumeric characters</td>
<td>Tagnumber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Enter up to 14 alphanumeric characters</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Transmitter is in Digital Output Mode:

<table>
<thead>
<tr>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag Name</td>
<td>Enter up to 14 alphanumeric characters</td>
<td>Tagnname</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Name</td>
<td>Enter up to 6 alphanumeric characters</td>
<td>Devicename</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With HART Transmitters

<table>
<thead>
<tr>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HART Tag</td>
<td>Enter up to 12 alphanumeric characters</td>
<td>(spaces)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART Descriptor</td>
<td>Enter up to 14 alphanumeric characters</td>
<td>(spaces)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HART Message</td>
<td>Enter up to 32 alphanumeric characters</td>
<td>(spaces)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With all transmitters

<table>
<thead>
<tr>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube MS Code</td>
<td>Enter up to 32 alphanumeric characters</td>
<td>Tube MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube Serial Num</td>
<td>Enter up to 16 alphanumeric characters</td>
<td>Tube S/N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-11 3 PASSCODES

<table>
<thead>
<tr>
<th>Prompt/Parameter</th>
<th>Options or Parameter Limits</th>
<th>Factory Default Configuration</th>
<th>User Entry or Selection</th>
<th>Remarks/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passcode 1</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If On:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 1 Protect?</td>
<td>Setup; Totals Reset; Setup Totals; Test Mode; Test Mode & Setup; Test Mode & Reset; Test Mode, Setup, and Reset</td>
<td>Setup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passcode 1</td>
<td>0000 to 9998</td>
<td>- - -</td>
<td></td>
<td>Following entry, confirmation screen appears. Press “Left” to cancel, “Right” to accept.</td>
</tr>
<tr>
<td>Passcode 2</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If On:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 2 Protect?</td>
<td>Setup; Totals Reset; Setup Totals; Test Mode; Test Mode & Setup; Test Mode & Reset; Test Mode, Setup, and Reset</td>
<td>Setup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passcode 2</td>
<td>0000 to 9998</td>
<td>- - -</td>
<td></td>
<td>Following entry, confirmation screen appears. Press “Left” to cancel, “Right” to accept.</td>
</tr>
<tr>
<td>Structure Diagram</td>
<td>Prompt/Parameter</td>
<td>Options or Parameter Limits</td>
<td>Factory Default Configuration</td>
<td>User Entry or Selection</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>A-12</td>
<td>3 TRANSMITTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xmtr Mode?</td>
<td>Off-Line, On-Line</td>
<td>On-Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Frequency?</td>
<td>50 Hz, 60 Hz</td>
<td>60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Direction?</td>
<td>Positive, Reverse, BiDir Positive BiDir Reverse</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI 1 Function?</td>
<td>Off, Ack Alarm, Reset Net Tot, Reset Gr Tot, Reset All Tot, Multi-Range, Signal Lock</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If NOT Off:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI 1 Operation?</td>
<td>Normally Closed, Normally Open</td>
<td>Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI 2 Function?</td>
<td>Off, Ack Alarm, Reset Net Tot, Reset Gr Tot, Reset All Tot, Multi-Range, Signal Lock</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If NOT Off:</td>
<td>- - -</td>
<td>- - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI 2 Operation?</td>
<td>Normally Closed, Normally Open</td>
<td>Normally Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZL Detect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZL Setup</td>
<td>Off, On</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculate Setpt</td>
<td>Press→ if tube is filled. Press→ to start.</td>
<td>- - -</td>
<td>Completion indicated by Successful or Fail message.</td>
<td></td>
</tr>
<tr>
<td>Structure Diagram</td>
<td>Prompt/Parameter</td>
<td>Options or Parameter Limits</td>
<td>Factory Default Configuration</td>
<td>User Entry or Selection</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>A-14l</td>
<td>3 CALIBRATION</td>
<td></td>
<td>###.#######</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mfactor Format</td>
<td>Forms</td>
<td>###.#######</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>#.#####e+##</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meter Factor</td>
<td>From Flowtube 012.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If Xmtr is Analog Output Mode:</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Analog Out Cal</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>4 mA Adjust</td>
<td>Done, 0.5 mA, 0.05 mA, 0.005 mA</td>
<td>Done</td>
<td>Left and right arrow keys decrement and increment the step size picked with the Up and Down arrow keys.</td>
</tr>
<tr>
<td></td>
<td>20 mA Adjust</td>
<td>Done, 0.5 mA, 0.05 mA, 0.005 mA</td>
<td>Done</td>
<td>Left and right arrow keys decrement and increment the step size picked with the Up and Down arrow keys.</td>
</tr>
<tr>
<td></td>
<td>Preset Outputs</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Analog Preset</td>
<td>3.80 to 21.00 mA in form ###.##</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Analog Preset On</td>
<td>Off, On</td>
<td>Off</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>If Xmtr is Digital Output Mode:</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Rate Preset</td>
<td>0 to value limited by Rate Format</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Rate Preset On</td>
<td>Off, On</td>
<td>Off</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>If Pulse Out Mode is Pulse Rate</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Pulse Preset:</td>
<td>0 to Max Rate Freq</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Pulse Preset On</td>
<td>Off, On</td>
<td>Off</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>If Pulse Out Mode is Pulse Total</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Pulse Preset:</td>
<td>0 to 65535</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>Pulse Preset On</td>
<td>Off, On</td>
<td>Off</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>
Index

A
Alarm Actions 33
Alarm Clear Setup 54
Alarm Display Response Setup 53
Alarm Rate Response Setup 53
Alarms Setup 52
Analog Output Calibration 59
AutoZeroLock Alarm Setup 53
AutoZeroLock Detection Setup 58

C
Calibration Setup 58
Changing Data 41
Configuration 39
Configuration Worksheets 75
Contact Input Setup 56

D
Default Screen Setup 43
Diagnostic Actions 34
Diagnostic Display Response Setup 54
Diagnostic Rate Response Setup 54
Diagnostics Setup 54
Dual Display Setup 43

E
Empty Pipe Alarm Setup 53
Empty Pipe Detection Setup 58

F
Flow Direction Setup 56

H
HART Output Setup 52
Help, On-Line 37
High Fwd Tot 1 and High Fwd Tot 2 Alarm Setup 53
High Rate Alarm Setup 52
I
Identity Mode 30
Identity Setup 54

K
Keypad/Display, Operation from 21

L
Line Frequency Setup 56
Low Rate Alarm Setup 52

M
Measurements Mode 24

N
Noise Reduction Setup 57

O
On-Line Help 37
On-Line/Off-Line Mode Setup 55
Operation 21
Output Mode Setup 47
Outputs Setup 46

P
Passcodes Setup 55
Poll Address (HART) 52
Presetting Outputs 59
Priority Structure 38
Pulse Out Configuration 49

Q
Quick Start
 Foundation Fieldbus 16
 FoxCom or HART 15

R
Range Setup 49
Rate Display Setup 43
Rate Output Damping Setup 50
Reference Documents 12
Relay Output Setup 50
Reseting Totals 37

S
Setup
 Alarms 52
 Calibration 58
 Diagnostics 54
 Identity 54
 Outputs 46
 Passcodes 55
 System Parameters 43
 Transmitter 55
Setup Mode 32
Setup Structure Diagrams 61
Status Mode 25
System Parameters Setup 43

T
Top Level Menu 22
Totalizer Overflow 37
Totalizer Overflow (Rollover) 37
Totalizer Setup 45
Transmitter Setup 55

V
Viewing Data 41